An outbreak of coronavirus disease 2019 (COVID-19) has quickly spread worldwide from December 2019, thus characterizing a pandemic. Until August 2020, the United States of America (U.S.) accounted for almost one-fourth of the total deaths by coronavirus. In this paper, a new regression is constructed to identify the variables that affected the first-wave COVID-19 mortality rates in the U.S. states. The mortality rates in these states are computed by considering the total of deaths recorded on 30, 90, and 180 days from the 10th recorded case. The proposed regression is compared to the Kumaraswamy and unit-Weibull regressions, which are useful in modeling proportional data. It provides the best goodness-of-fit measures for the mortality rates and explains
of its variability. The population density, Gini coefficient, hospital beds, and smoking rate explain the median of the COVID-19 mortality rates in these states. We believe that this article’s results reveal important points to face pandemic threats by the State Health Departments in the U.S.
In many practical situations, there is an interest in modeling bounded random variables in the interval (0, 1), such as rates, proportions, and indexes. It is important to provide new continuous models to deal with the uncertainty involved by variables of this type. This paper proposes a new quantile regression model based on an alternative parameterization of the unit Burr XII (UBXII) distribution. For the UBXII distribution and its associated regression, we obtain score functions and observed information matrices. We use the maximum likelihood method to estimate the parameters of the regression model, and conduct a Monte Carlo study to evaluate the performance of its estimates in samples of finite size. Furthermore, we present general diagnostic analysis and model selection techniques for the regression model. We empirically show its importance and flexibility through an application to an actual data set, in which the dropout proportion of Brazilian undergraduate animal sciences courses is analyzed. We use a statistical learning method for comparing the proposed model with the beta, Kumaraswamy, and unit-Weibull regressions. The results show that the UBXII regression provides the best fit and the most accurate predictions. Therefore, it is a valuable alternative and competitive to the well-known regressions for modeling double-bounded variables in the unit interval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.