White mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area. Here, silver nanoparticles were biogenically synthesized using the fungus Trichoderma harzianum and characterized. Cytotoxicity and genotoxicity were evaluated, and the nanoparticles were initially tested against white mold sclerotia. Their effects on soybean were also investigated with no effects observed. The nanoparticles showed potential against S. sclerotiorum, inhibiting sclerotia germination and mycelial growth. Nanoparticle characterization data indicated spherical morphology, satisfactory polydispersity and size distribution. Cytotoxicity and genotoxicity assays showed that the nanoparticles caused both the effects, although, the most toxic concentrations were above those applied for white mold control. Given the potential of the nanoparticles against S. sclerotiorum, we conclude that this study presents a first step for a new alternative in white mold control.
Pesticides are the main tactics for pest control because they reduce the pest population very fast and their efficiency does not depend on abiotic factors. However, the indiscriminate use of these substances can speed up the development of resistant populations and causing environmental contamination. Therefore, alternative methods of pest control are sought, such as the use of botanical compounds. Nanoencapsulation of volatile compounds has been shown to be an important tool that can be used to overcome the lack of stability of these compounds. In this work, we describe the preparation and characterization of chitosan nanoparticles functionalized with β-cyclodextrin containing carvacrol and linalool. The toxicity and biological activity were evaluated. Decreases of toxicity were observed when the compounds were nanoencapsulated. The nanoparticles presented insecticidal activity against the species Helicoverpa armigera (corn earworm) and Tetranychus urticae (spider mite). In addition, repellent activity and reduction in oviposition were observed for the mites.
Biogenic synthesis of silver nanoparticles employing fungi offers advantages, including the formation of a capping from fungal biomolecules, which provides stability and can contribute to biological activity. In this work, silver nanoparticles were synthesized using Trichoderma harzianum cultivated with (AgNP-TS) and without enzymatic stimulation (AgNP-T) by the cell wall of Sclerotinia sclerotiorum. The nanoparticles were evaluated for the control of S. sclerotiorum. The specific activity of the T. harzianum hydrolytic enzymes were determined in the filtrates and nanoparticles. Cytotoxicity and genotoxicity were also evaluated. Both the nanoparticles exhibited inhibitory activity towards S. sclerotiorum, with no new sclerotia development, however AgNP-TS was more effective against mycelial growth. Both the filtrates and the nanoparticles showed specific enzymatic activity. Low levels of cytotoxicity and genotoxicity were observed. This study opens perspectives for further exploration of fungal biogenic nanoparticles, indicating their use for the control of S. sclerotiorum and other agricultural pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.