By means of a two-step electrochemical conversion of levulinic acid to octane via valeric acid we propose the use of electrochemistry for the production of renewable chemicals and biofuels. The reactions can be performed in water and at room temperature and thus fulfil the major criteria of green chemistry.
Levulinic acid as a platform for electrochemical synthesis: electrochemical conversion of levulinic acid and its primary products is presented as a promising alternative for the generation of renewable chemicals and biofuels and for energy storage.
Electroorganic synthesis can be exploited for the production of biofuels from fatty acids and triglycerides. With Coulomb efficiencies (CE) of up to 50 %, the electrochemical decarboxylation of fatty acids in methanolic and ethanolic solutions leads to the formation of diesel-like olefin/ether mixtures. Triglycerides can be directly converted in aqueous solutions by using sonoelectrochemistry, with olefins as the main products (with a CE of more than 20 %). The latter reaction, however, is terminated at around 50 % substrate conversion by the produced side-product glycerol. An energy analysis shows that the electrochemical olefin synthesis can be an energetically competitive, sustainable, and--in comparison with established processes--economically feasible alternative for the exploitation of fats and oils for biofuel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.