Negative effects of available antibiotics and the constant development of bacterial resistance motivate a search for new antimicrobial agents. Aromatics plants have traditionally been used as antibacterial agents and are well accepted today as a source of antioxidants. The present study evaluated the antibacterial activities and antioxidant capacity of eight aromatic plants, indigenous to the flora of the Balkan Peninsula, which are used as medicinal plants in traditional medicine. The plants studied were Hyssopus officinalis, Angelica pancicii, Angelica sylvestris, Laserpitium latifolium, Achillea grandifolia, Achillea crithmifolia, Artemisia absinthium and Tanacetum parthenium. The antimicrobial activities of methanolic extracts of the plant tissues against 16 bacterial isolates of Escherichia coli, Pseudomonas aeruginosa, Klebsiella sp., Proteus mirabilis, Acinetobacter sp., Staphylococcus aureus, Streptococcus pyogenes, Streptococcus pneumoniae and Enterococcus faecalis were investigated using a microwell dilution assay. Minimal inhibitory concentration (MIC) of the extracts ranged from 6.3 to 100 mg mL -1 , and minimal bactericidal concentration (MBC) ranged from 12.5 to 100 mg mL -1 . Antioxidant potential of the extracts was analyzed as contents of total phenols and flavonoids; radical scavenging activity by the ABTS • + and DPPH • methods, and reducing power by the iron (III) to iron (II) reduction assay, and the ferric reducing antioxidant power assay (FRAP). Results of antioxidative activities from the 4 methods demonstrated similar sequence of activity: A. crithmifolia > A. grandifolia > H. officinalis > A. absinthium > T. parthenium > L. latifolium > A. pancicii > A. sylvestris. The total content of polyphenols and flavonoids in the methanol extracts of the studied species positively correlated with their antioxidant properties, confirming their major role in antioxidant activity of these species.
The purpose of this study was to investigate the inhibitory/bactericidal activity and cell membrane effects of the hydrodistilled essential oil of Inula helenium L. roots against Staphylococcus aureus. Additionally, detailed chemical investigation was done in order to pinpoint the most active oil constituents and also the parts of these molecules responsible for their antimicrobial effect. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the broth microdilution method. The membrane-active nature of this oil was investigated by measuring the culture turbidity, leakage of phosphates, and 260-nm-absorbing material, together with lysis of the exposed cells. Finally, the effect of the oil on the cells was visualized using scanning electron microscopy (SEM). The chemical composition of the essential oil was analyzed using gas chromatography-mass spectrometry (GC-MS) and preparative medium-pressure liquid chromatography (MPLC). Chemical modification of the oil was performed using catalytic hydrogenation (H(2), Pd/C) and reduction with NaBH(4). The MIC and MBC values were 0.01 μl mL(-1) and 0.02 μl mL(-1), respectively. Membrane damage was demonstrated through increased permeability (phosphates and nucleic acid leakage), followed by lysis of the exposed cells, captured on SEM images. The most active constituents were alantolactone, isoalantolactone, and diplophyllin. The essential oil showed very potent antistaphylococcal activity, with obvious membrane-damaging effects. Sesquiterpene lactones were found to be the most active principles of the oil, whose eudesmane core olefinic bonds, along with the α,β-methylene-lactone ring, are essential structural parts responsible for the exhibited antimicrobial activity.
The present study describes the total phenolic content, concentrations of flavonoids and in vitro antioxidant and antimicrobial activity of methanol extracts from Seseli pallasii Besser, S. libanotis (L.) Koch ssp. libanotis and S. libanotis (L.) Koch ssp. intermedium (Rupr.) P. W. Ball, growing wild in Serbia. The total phenolic content in the extracts was determined using Folin-Ciocalteu reagent and their amounts ranged between 84.04 to 87.52 mg GA (gallic acid)/g. The concentrations of flavonoids in the extracts varied from 4.75 to 19.37 mg Qu (quercetin)/g. Antioxidant activity was analyzed using DPPH reagent. Antioxidant activity ranged from 0.46 to 4.63 IC50 (mg/ml) and from 1.98 to 2.19 mg VitC (vitamin C)/g when tested with the DPPH and ABTS reagents, respectively, using BHA and VitC as controls. The antimicrobial activity of the extracts was investigated using a micro-well dilution assay for the most common human gastrointestinal pathogenic bacterial strains: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 9027, Salmonella enteritidis ATCC 13076, Bacillus cereus ATCC 10876, Listeria monocytogenes ATCC15313, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 10231. This finding suggests that Seseli species may be considered as a natural source of antioxidants and antimicrobial agents.
A hydro-distilled oil of Satureja hortensis L. was investigated for its antimicrobial activity against a panel of 11 bacterial and three fungal strains. The antimicrobial activity was determined using the disk-diffusion and broth microdilution methods. The essential oil of S. hortensis L. showed significant activity against a wide spectrum of Gram (-) bacteria (MIC/MBC=0.025-0.78/0.05-0.78 μl/ml) and Gram (+) bacteria (MIC/MBC=0.05-0.39/0.05-0.78 μl/ml), as well as against fungal strains (MIC/MBC=0.20/0.78 μl/ml). The results indicate that this oil can be used in food conservation, treatment of different diseases of humans, and also for the treatment of plants infected by phytopathogens
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.