A group of clinicians from across Europe experienced in the use of botulinum toxin type A for the treatment of spasticity following acquired brain injury gathered to develop a consensus statement on best practice in managing adults with spasticity. This consensus table summarizes the current published data, which was collated following extensive literature searches, their assessment for level of evidence and discussion among the whole group. Published information is supplemented by expert opinion based on clinical experience from 16 European countries, involving 28 clinicians, who treat an average of approximately 200 patients annually, representing many thousand spasticity treatments with botulinum toxin per year.
Loss of muscle mass shows a negative correlation with length of stay, and seems to be higher during the first 2-3 weeks of immobilization/intensive care unit stay. Ultrasound is a valid and practical measurement tool for documenting muscle mass (e.g. muscle layer thickness) as part of the daily routine at an intensive care unit.
Objective: To assess the inter-rater and intra-rater reliability and validity of the original and a modified Medical Research Council scale for testing muscle strength in radial palsy. Design: Prospective, randomized validation study Patients: Thirty-one patients with peripheral paresis of radial innervated forearm muscles were included. Methods: Wrist extension, finger extension and grip strength were evaluated by manual muscle testing. Dynamometric measurement of grip strength was performed. Pair-wise weighted kappa coefficients were calculated to determine inter-rater and intra-rater reliability. The 2 scores were compared using the signed-rank test.
Neuromuscular electrical stimulation appears to be a useful adjunct to revert muscle wasting in intensive care unit long-term patients; however, larger studies with a larger sample size are needed to confirm these promising, but preliminary, results.
The histologic features of aging muscle suggest that denervation contributes to atrophy, that immobility accelerates the process, and that routine exercise may protect against loss of motor units and muscle tissue. Here, we compared muscle biopsies from sedentary and physically active seniors and found that seniors with a long history of high-level recreational activity up to the time of muscle biopsy had 1) lower loss of muscle strength versus young men (32% loss in physically active vs 51% loss in sedentary seniors); 2) fewer small angulated (denervated) myofibers; 3) a higher percentage of fiber-type groups (reinnervated muscle fibers) that were almost exclusive of the slow type; and 4) sparse normal-size muscle fibers coexpressing fast and slow myosin heavy chains, which is not compatible with exercise-driven muscle-type transformation. The biopsies from the old physically active seniors varied from sparse fiber-type groupings to almost fully transformed muscle, suggesting that coexpressing fibers appear to fill gaps. Altogether, the data show that long-term physical activity promotes reinnervation of muscle fibers and suggest that decades of high-level exercise allow the body to adapt to age-related denervation by saving otherwise lost muscle fibers through selective recruitment to slow motor units. These effects on size and structure of myofibers may delay functional decline in late aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.