We study the time evolution in the transverse-field Ising chain subject to quantum quenches of finite duration, ie, a continuous change in the transverse magnetic field over a finite time. Specifically, we consider the dynamics of the total energy, oneand two-point correlation functions and Loschmidt echo during and after the quench as well as their stationary behaviour at late times. We investigate how different quench protocols affect the dynamics and identify universal properties of the relaxation.
Machine learning algorithms often take inspiration from the established results and knowledge from statistical physics. A prototypical example is the Boltzmann machine algorithm for supervised learning, which utilizes knowledge of classical thermal partition functions and the Boltzmann distribution. Recently, a quantum version of the Boltzmann machine was introduced by Amin, et. al., however, noncommutativity of quantum operators renders the training process by minimizing a cost function inefficient. Recent advances in the study of non-equilibrium quantum integrable systems, which never thermalize, have lead to the exploration of a wider class of statistical ensembles. These systems may be described by the so-called generalized Gibbs ensemble (GGE), which incorporates a number of "effective temperatures". We propose that these GGEs can be successfully applied as the basis of a Boltzmann-machine-like learning algorithm, which operates by learning the optimal values of effective temperatures. We show that the GGE algorithm is an optimal quantum Boltzmann machine: it is the only quantum machine that circumvents the quantum training-process problem. We apply a simplified version of the GGE algorithm, where quantum effects are suppressed, to the classification of handwritten digits in the MNIST database. While lower error rates can be found with other state-of-the-art algorithms, we find that our algorithm reaches relatively low error rates while learning a much smaller number of parameters than would be needed in a traditional Boltzmann machine, thereby reducing computational cost. * t.puskarov@uu.nl † a.cortescubero@uu.nl arXiv:1804.03546v3 [cond-mat.stat-mech] 1 Dec 2018
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.