A polyradical consisting of alternating triarylamine and perchlorotriphenylmethyl radical moieties was synthesized by Horner-Emmons reaction. This compound is the first polymeric neutral mixedvalence compound that shows an intervalence charge transfer (IV-CT) band in the NIR. Comparison of the absorption spectra of the polymer with those of a reference monomer shows that the IV-CT transition is confined to one repeating unit. HOMO and LUMO levels are at -5.5 and -4.5 eV vs vacuum, respectively, as estimated by cyclic voltammetry. A very low exciton binding energy is indicated by comparison with the optical band gap (1.2 eV). The electron transfer properties of the polymer were investigated in solution by fs-pump-probe transient absorption spectroscopy. After optical excitation, the polymer shows a biexponential decay in the ps time regime. The short-living, solvent-dependent component refers to the direct decay from the IV-CT state to the ground state and the long-living, solvent-independent component is tentatively attributed to an equilibrium formation of the IV-CT state and a completely charge separated state. The charge-transport properties were investigated in films in organic field-effect transistor (OFET) devices. Electron and hole mobilities are both about 3 Â 10 -5 cm 2 V -1 s -1 , demonstrating ambipolar transport behavior of the polymer.
The photophysics of two donor-substituted truxenone derivatives has been studied by femtosecond time-resolved transient absorption spectroscopy. The systems consist of a central truxenone acceptor with three triarylamine (TARA) branches which act as electron donors. Upon excitation in the visible regime an electron is transferred from the donor to the acceptor, generating a charge-separated state. This state can be probed via the characteristic absorption of the TARA radical cation around 700 nm. A second absorption band around 420 nm exhibits the same kinetics and is assigned to an absorption of the radical anion of the truxenone moiety. The back electron transfer and the recovery of the ground state can be interpreted within the framework of Marcus theory. To study the dependence of the back electron transfer on the electronic coupling, the distance between the donor and the acceptor was adjusted. Two solvents were employed, dimethylsulfoxide and dichloroethane. A biexponential decay of the bands assigned to the charge-separated state was observed, with time constants in the picosecond range. Surprisingly, the rates for electron back transfer do not follow the simple picture of the donor-acceptor distance being the determining factor. The observations are explained within a model that additionally takes steric interactions between the donor and the acceptor into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.