This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders.
Development of treatment strategies of chronic inflammatory disorders relies on on-going progress in drug discovery approaches and related molecular biologics. This study presents a gene reporter-based approach of phenotypic screening for anti-inflammatory compounds in the context of rheumatoid arthritis (RA). CEBPD gene, used as the target gene for the screening readout, encodes CCAAT/enhancer binding protein delta (C/EBPδ) transcription factor (TF). Structural and regulatory characteristics of CEBPD gene as well as function of C/EBPδ TF in the context of inflammation satisfied assay requirements. C/EBPδ TF acts as a key regula-tor of inflammatory gene transcription in macrophages (Mϕ) and is observed to con-tribute to disease development in both a rodent model of RA and RA patient biopsies. Despite well-described pro-inflammatory effects of C/EBPδ TF, it functions as a cell context-specific signal integrator showing also an anti-inflammatory activity. Conse-quently, both activation and inhibition of CEBPD alike may display a desired anti-inflammatory effect. The aim of this study was to develop a high-throughput screening assay for CEBPD-modulating compounds and confirm hit compounds’ anti-inflammatory effects via gene expression analysis. Generation and characterization of a multi-gene-reporter cassette 1.0 encoding enzy-matic secreted alkaline phosphatase (SEAP) gene reporter was a priority during the assay development. Chemiluminescent SEAP assay demonstrating high assay sensitivi-ty, broad linear range, high reproducibility and repeatability was chosen to monitor activity of the defined CEBPD promoter (CEBPD::SEAP). PMA-differentiated and M1-polarized THP-1-derived Mϕ stably expressing multi-gene-reporter cassette 1.0 were used as the assay’s cellular system. mRNA expression of both reporter CEBPD::SEAP and endogenous CEBPD mirrored each other in response to a LPS and IFN-g-triggered inflammatory stimulus (M1 treatment), even though the defined CEBPD promoter re-gion, utilized in the assay, contained only the most proximal and known regulatory se-quences. SEAP chemiluminescence in the reporter cells´ supernatant reliably correlat-ed with the M1 treatment-induced CEBPD::SEAP gene expression. The final screening protocol was developed for semi-automatic screening in the 384-well format. In total, 2054 compounds from LOPAC®1280 and ENZO®774 libraries were screened twice using the enzymatic SEAP readout with subsequent analysis of 18 selected compounds: nine with the highest and nine with the lowest signals, further characterized by qPCR. Gene expression levels of endogenous CEBPD, CEBPD::SEAP reporter as well as, IL-6, IL-1β, and CCL2 as inflammatory markers were quantified. qPCR assays failed to corre-late to SEAP readout in 15 compounds within three standard deviations (SDs) from sol-vent control: nine low signal and six high signal compounds. Demonstrating both assay sensitivity and specificity, a correlation between qPCR gene expression and SEAP readout was observed for three hit compounds with signals above three SDs: BET inhib-itors (BETi) GSK 1210151A and Ro 11-1464 as well as an HDAC inhibitor (HDACi) vori-nostat. The control compound trichostatin A (TSA) that reproducibly upregulated SEAP readout is also an HDAC inhibitor with a similar structure to vorinostat and was there-fore included in the anti-inflammatory phenotype analysis. The observed suppression of IL-6, IL-1ß, and CCL2 gene expression by hit compounds suggested their anti-inflammatory effect in THP-1 reporter Mϕ. mRNA expression of IL-6 and CCL2 was suppressed by HDACi and BETi at both 4 and 24 hours, while BETi reduced IL-1β mRNA expression 24 hour time point. BETi significantly upregulated gene expression of both reporter CEBPD::SEAP and endogenous CEBPD, 4 hours after M1 treatment. At the same time point, HDACi completely abolished the mRNA expres-sion of the endogenous CEBPD, while simultaneously upregulating mRNA expression of the reporter CEBPD::SEAP. The use of the most proximal 300 base pairs region of en-dogenous CEBPD promoter, making the upstream regulatory elements unavailable in the assay, may account for differential expression levels of SEAP and C/EBPδ TF. This observation corroborated the need to include a longer and more extensive CEBPD´s gene regulatory area. Thus, an improved multi-gene-reporter cassette 2.0 was gener-ated to be used on the basis of a bacterial artificial chromosome (BAC) covering CE-BPD´s genomic area of about 200,000 base pairs. The generated screening assay is flexible, reliable, and sensitive displaying potential for drug discovery and drug repurposing. The pharmacological modulation of CEBPD gene expression, first reported for GSK 1210151A, Ro 11-1464, and vorinostat, contrib-utes to the understanding of inflammatory responses in Mϕ and may have RA thera-peutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.