BackgroundChikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes high fever, rash, and recurrent arthritis in humans. It has efficiently adapted to Aedes albopictus, which also inhabits temperate regions and currently causes large outbreaks in the Caribbean and Latin America. Ebola virus (EBOV) is a member of the filovirus family. It causes the Ebola virus disease (EDV), formerly known as Ebola hemorrhagic fever in humans and has a mortality rate of up to 70 %. The last outbreak in Western Africa was the largest in history and has caused approximately 25,000 cases and 10,000 deaths. For both viral infections no specific treatment or licensed vaccine is currently available. The bis-hexasulfonated naphthylurea, suramin, is used as a treatment for trypanosome-caused African river blindness. As a competitive inhibitor of heparin, suramin has been described to have anti-viral activity.MethodsWe tested the activity of suramin during CHIKV or Ebola virus infection, using CHIKV and Ebola envelope glycoprotein pseudotyped lentiviral vectors and wild-type CHIKV and Ebola virus.ResultsSuramin efficiently inhibited CHIKV and Ebola envelope-mediated gene transfer while vesicular stomatitis virus G protein pseudotyped vectors were only marginally affected. In addition, suramin was able to inhibit wild-type CHIKV and Ebola virus replication in vitro. Inhibition occurred at early time points during CHIKV infection.ConclusionSuramin, also known as Germanin or Bayer-205, is a market-authorized drug, however shows significant side effects, which probably prevents its use as a CHIKV drug, but due to the high lethality of Ebola virus infections, suramin might be valuable against Ebola infections.
Chimeric antigen receptor (CAR) T cells are in prime focus of current research in cancer immunotherapy. Facilitating CAR T cell generation is among the top goals. We have recently demonstrated direct in vivo generation of human CD19-CAR T cells by targeting CD8+ cells using lentiviral vectors (LVs). The anti-tumor potency of in vivo generated CAR T cells was assessed in human PBMC-transplanted NSG mice carrying i.v. injected CD19+ Nalm-6 tumor cells. A single injection of CD8-targeted LV delivering CD19-CAR was sufficient to completely eliminate the tumor cells from bone marrow and spleen, whereas control animals contained high levels of CD19+ cells. Tumor elimination was due to in vivo generated CAR+ cells. Notably, these were not only composed of T lymphocytes but also included CAR+ natural killer cells (NK and NKT). This is the first demonstration of tumor elimination by in vivo generated human CAR T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.