Controlling signal transduction with artificial designer receptors is a promising approach to realize future medicine for intractable diseases. Although several functional artificial receptors have been reported by domain engineering, more sophisticated engineering within domains has yet to be thoroughly investigated. Here we demonstrate motif-based engineering of a receptor tyrosine kinase for reprogramming signal transduction. We design a scaffold-less tyrosine kinase domain that does not recruit any signal transducers but retains its kinase function. The resultant scaffold-less tyrosine kinase domain is linked to a tyrosine motif that recruits a target signaling molecule upon its phosphorylation. The engineered tyrosine motif–kinase fusion protein is further connected to a small molecule- or light-dependent dimerizing domain that can switch on the kinase activity in response to an external stimulus. The resultant designer receptors attain specific chemical- or photo-activation of signaling molecules of interest in mammalian cells. Thus, our designer receptor tyrosine kinase proves the possibility of rationally reprogramming intracellular signal transduction on a motif basis. The motif-based receptor engineering may realize tailor-made functional receptors useful in the fields of biology and medicine.
Intracellular signal transduction is regulated by a variety of transmembrane receptors. Many researchers have aimed to arbitrarily regulate the intracellular signaling and subsequent cell fate with artificial receptors, of which the ligand recognition and signaling properties could be artificially designed. Although several architectures of homodimeric artificial receptors have been reported, engineering of heterodimeric receptors, which are abundant among natural receptors, have yet to be thoroughly investigated. In this study, we rationally design artificial heterodimeric receptors for activating target signaling molecules. We locate a tyrosine motif on an engineered tyrosine kinase domain, which is further connected to a small molecule-responsive heterodimeric module, attaining a pair of heterodimeric receptors with different tyrosine motifs within the pair. The resultant heterodimeric receptors successfully activate target signaling molecules and even control cell proliferation levels according to the properties of tyrosine motifs connected. Thus, our heterodimeric receptors may open a new era of tailor-made designer receptors, which could be useful for cell therapy against intractable diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.