Resistance to antimicrobial agents by pathogenic bacteria has emerged in recent years and is a major health problem. In this context silver and silver nanoparticles (AgNP) have been known to have inhibitory and bactericidal effects and was used throughout history for treatment of skin ulcer, bone fracture, and supporting wound healing. In all of these applications prevention and treatment of bacterial colonized/infected wounds are critical. In this context silver and its derivatives play an important role in health care. Silver is widely used in clinical practice in the form of silver nitrate and/or silver sulfadiazine. In the last few years silver nanoparticles entered into clinical practice as both antimicrobial and antifungal agents. In addition, nanosilver is used in coating medical devices (catheters) and as component of wound dressings. In this paper we present summarized information about silver and nanoparticles made of silver in the context of their useful properties, especially antibacterial ones, being of a great interest for researchers and clinicians.
Keratin is a cytoskeletal scaffolding protein essential for wound healing and tissue recovery. The aim of the study was to evaluate the potential role of insoluble fur keratin‐derived powder containing silver nanoparticles (FKDP‐AgNP) in the allogenic full‐thickness surgical skin wound model in diabetic mice. The scanning electron microscopy image evidenced that the keratin surface is covered by a single layer of silver nanoparticles. Data obtained from dynamic light scattering and micellar electrokinetic chromatography showed three fractions of silver nanoparticles with an average diameter of 130, 22.5, and 5 nm. Microbiologic results revealed that the designed insoluble FKDP‐AgNP dressing to some extent inhibit the growth of Escherichia coli and Staphylococcus aureus. In vitro assays showed that the FKDP‐AgNP dressing did not inhibit fibroblast growth or induce hemolysis. In vivo studies using a diabetic mice model confirmed biocompatible properties of the insoluble keratin dressings. FKDP‐AgNP significantly accelerated wound closure and epithelization at Days 5 and 8 (p < .05) when compared with controls. Histological examination of the inflammatory response documented that FKDP‐AgNP‐treated wounds contained predominantly macrophages, whereas their untreated variants showed mixed cell infiltrates rich in neutrophils. Wound inflammatory response based on macrophages favors tissue remodeling and healing. In conclusion, the investigated FKDP‐AgNP dressing consisting of an insoluble fraction of keratin, which is biocompatible, significantly accelerated wound healing in a diabetic mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.