Strongly anisotropic electric-field enhancements of the thermal emission rates of electrons from the EL3 and EL5 deep-level defects in n-type GaAs crystal have been revealed with the double-correlation deep-level transient spectroscopy. The results, analysed by taking into account both the Poole-Frenkel and phonon-assisted tunnel effects, evidence a strong coupling of the defects to the lattice vibronic modes. The defect potential anisotropy of EL3 is consistent with the defect identification as an off-centre substitutional oxygen on the arsenic site. The revealed surprising break-down of the emission-rate enhancement, for the electric field applied along the 1 0 0 crystallographic direction, is interpreted as resulting from a possible reorientation of the EL3 defect, owing to a jump of the oxygen ion into a neighbouring lattice site, driven by a strong electric field. On the other hand, a close pair divacancy complex is suggested to be responsible for the EL5 defect.
We present results of deep-level transient spectroscopy investigations of defects in a GaN-based heterostructure of a blue-violet laser diode, grown by plasma-assisted molecular beam epitaxy on a bulk GaN substrate. Three majority-carrier traps, T1 at E C − 0.28 eV, T2 at E C − 0.60 eV, and T3 at EV + 0.33 eV, were revealed in deep-level transient spectra measured under reverse-bias conditions. On the other hand, deep-level transient spectroscopy measurements performed under injection conditions, revealed one minority--carrier trap, T4, with the activation energy of 0.20 eV. The three majority--carrier traps were revealed in the spectra measured under different reverse--bias conditions, suggesting that they are present in various parts of the laser--diode heterostructure. In addition, these traps represent different charge--carrier capture behaviours. The T1 trap, which exhibits logarithmic capture kinetics, is tentatively attributed to electron states of dislocations in the n-type wave-guiding layer of the structure. In contrast, the T2, T3, and T4 traps display exponential capture kinetics and are assigned to point defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.