-We examined the effects of three benzofurans [1-(Benzofuran-5-yl)-N-methylpropan-2 -amine (5-MAPB), 1-(Benzofuran-2-yl)-N-methylpropan-2-amine (2-MAPB), and 1-(Benzofuran-5-yl)-N-ethylpropan-2-amine (5-EAPB)] on the extracellular monoamine level in mouse corpus striatum by the microdialysis method and compared them with the effects of psychoactive 3,4-Methylenedioxymethamphetamine (MDMA). The effects of benzofurans on the extracellular monoamine level were qualitatively analogous to that of MDMA, with an increase in serotonin (5-HT) level exceeding dopamine (DA) level. The effects of 2-MAPB and 5-EAPB were almost the same as the effect of MDMA. However, 5-MAPB strongly increased extracellular monoamine level than MDMA. These differences in the potency appear to have a structure-activity relationship. The administration of 5-MAPB (1.6 × 10 -4 mol/kg B.W.) resulted in the death of two-thirds of the mice. The same dose of MDMA did not cause any deaths. The administration of 5-MAPB (1.6 × 10 -4 mol/kg B.W.) produced a 3.41°C ± 0.28°C rise in rectal temperature after 1 hr, whereas the administration of MDMA (1.6 × 10 -4 mol/kg B.W.) produced an approximate 1.85°C ± 0.26°C rise. These results suggest that benzofurans have 5-HT toxicity similar to MDMA, and 5-MAPB has a higher risk of lethal intoxication than MDMA. Furthermore, 5-APB, the metabolic product of 5-MAPB demethylation, may be involved in the acute 5-HT toxicity and may cause lethal intoxication in mice.
The regional distribution of c-Fos expression in the brain after the administration of two tremorgenic agents was studied. In both the harmaline- and oxotremorin-treated rats, c-Fos-positive neurons were extensively distributed in the basal ganglia nuclei and the cerebellum. Additionally, in the harmaline-treated rats, numerous c-Fos-positive neurons were also distributed throughout the inferior olivary nucleus. In the oxotremorine-treated rats, while the inferior olive was not involved, c-Fos was strongly expressed in the neurons of the reticular thalamic nucleus, possibly due to the muscarinic effects of oxotremorine. The present study revealed that the inferior olive is selectively activated in the harmaline-administered animals and that the basal ganglia are involved in both harmaline- and oxotremorine-induced tremors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.