Emergency granulopoiesis, also known as demand-adapted granulopoiesis, is defined as the response of an organism to systemic bacterial infections, and it results in neutrophil mobilization from reservoir pools and increased myelopoiesis in the bone marrow. Indirect and direct initiating mechanisms of emergency granulopoiesis have been hypothesized. However, the detailed mechanism of hyperactive myelopoiesis in the bone marrow, which leads to granulocyte left shift, remains unknown. In this study, we report that TLR4 is expressed on granulo-monocytic progenitors, as well as mobilized human peripheral blood CD34+ cells, which account for 0.2% of monocytes in peripheral blood, and ∼ 10% in bone marrow. LPS, a component of Gram-negative bacteria that results in a systemic bacterial infection, induces the differentiation of peripheral blood CD34+ cells into myelocytes and monocytes in vitro via the TLR4 signaling pathway. Moreover, CD34+ cells directly responded to LPS stimulation by activating the MAPK and NF-κB signaling pathways, and they produced IL-6 that promotes emergency granulopoiesis by phosphorylating C/EBPα and C/EBPβ, and this effect was suppressed by the action of an IL-6 receptor inhibitor. This work supports the finding that TLR is expressed on human hematopoietic stem and progenitor cells, and it provides evidence that human hematopoietic stem and progenitor cells can directly sense pathogens and produce cytokines exerting autocrine and/or paracrine effects, thereby promoting differentiation.
The molecular mechanisms involved in the terminal differentiation of erythroblasts have been elucidated by comparing enucleation and cell division. Although various similarities and differences between erythroblast enucleation and cytokinesis have been reported, the mechanisms that control enucleation remain unclear. We previously reported that dynein and microtubule-organizing centers mediated the polarization of nuclei in human erythroblasts. Moreover, the accumulation of F-actin was noted during the enucleation of erythroblasts. Therefore, during enucleation, upstream effectors in the signal transduction pathway regulating dynein or actin, such as cell division control protein 42 homolog (Cdc42), may be crucial. We herein investigated the effects of the Cdc42 inhibitor, CASIN, on cytokinesis and enucleation in colony-forming units-erythroid (CFU-Es) and mature erythroblasts (day 10). CASIN blocked the proliferation of CFU-Es and their enucleation in a dose-dependent manner. Dynein adopted an island-like distribution in the cytoplasm of non-treated CFU-Es, but was concentrated near the nucleus as a dot and co-localized with γ-tubulin in CASIN-treated cells. CASIN blocked the accumulation of F-actin in CFU-Es and day 10 cells. These results demonstrated that Cdc42 plays an important role in cytokinesis, nuclear polarization and nuclear extrusion through a relationship with dynein and actin filament organization during the terminal differentiation of erythroblasts.
It is widely believed that enzymatic activities in ectothermic organisms adapt to environmental temperatures. However, to date, no study has thoroughly compared multiple thermodynamic enzymatic characteristics across species living in dramatically different environments. To start to address this gap, we compared the characteristics of lactate dehydrogenase (LDH) purified from the muscles from slime flounder Microstomus achne white muscle and bovine skeletal muscle (bM) and heart. The K and V for pyruvate reduction were about three times higher for M. achne LDH than bM Surprisingly, maximum LDH activity was observed at ∼30 °C and ∼50 °C for M. achne and bovine LDHs, respectively, suggesting that the maximum enzymatic activity of LDH is set at a temperature ∼20 °C higher than environmental or body temperature across species. Although K and V values of these LDHs increased with temperature, the V /K ratio for M. achne LDH and bM was independent. Differential scanning calorimetry and enthalpy change measurements confirmed that M. achne and bovine muscle-specific LDHs shared similar properties. Based on the present findings and previous reports, we hypothesize that the function and thermodynamic properties of muscle LDH are highly conserved between a teleost adapted to cold, M. achne, and bovine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.