Neurons require trophic support during neural circuit formation; however, how the cellular milieu contributes to neuronal survival remains unclear. We found that layer V cortical neurons require support from microglia for survival during postnatal development. Specifically, we found that microglia accumulated close to the subcerebral and callosal projection axons in the postnatal brain. Inactivation of microglia by minocycline treatment or transient ablation of microglia in CD11b-DTR transgenic mice led to increased apoptosis, specifically in layer V subcerebral and callosal projection neurons. CX3CR1 in microglia was required for the survival of layer V neurons. Microglia consistently promoted the survival of cortical neurons in vitro. In addition, we identified microglia-derived IGF1 as a trophic factor that maintained neuronal survival. Our results highlight a neuron-glia interaction that is indispensable for network formation during a specific period in the developing brain.
Astrocytes are the most abundant glia cell type in the central nervous system (CNS), and are known to constitute heterogeneous populations that differ in their morphology, gene expression and function. Although glial fibrillary acidic protein (GFAP) is the cardinal cytological marker of CNS astrocytes, GFAP-negative astrocytes can easily be found in the adult CNS. Astrocytes are also allocated to spatially distinct regional domains during development. This regional heterogeneity suggests that they help to coordinate post-natal neural circuit formation and thereby to regulate eventual neuronal activity. Here, during lineage-tracing studies of cells expressing Olig2 using Olig2CreER; Rosa-CAG-LSL-eNpHR3.0-EYFP transgenic mice, we found Olig2-lineage mature astrocytes in the adult forebrain. Long-term administration of tamoxifen resulted in sufficient recombinant induction, and Olig2-lineage cells were found to be preferentially clustered in some adult brain nuclei. We then made distribution map of Olig2-lineage astrocytes in the adult mouse brain, and further compared the map with the distribution of GFAP-positive astrocytes visualized in GFAPCre; Rosa-CAG-LSL-eNpHR3.0-EYFP mice. Brain regions rich in Olig2-lineage astrocytes (e.g., basal forebrain, thalamic nuclei, and deep cerebellar nuclei) tended to lack GFAP-positive astrocytes, and vice versa. Even within a single brain nucleus, Olig2-lineage astrocytes and GFAP astrocytes frequently occupied mutually exclusive territories. These findings strongly suggest that there is a subpopulation of astrocytes (Olig2-lineage astrocytes) in the adult brain, and that it differs from GFAP-positive astrocytes in its distribution pattern and perhaps also in its function. Interestingly, the brain nuclei rich in Olig2-lineage astrocytes strongly expressed GABA-transporter 3 in astrocytes and vesicular GABA transporter in neurons, suggesting that Olig2-lineage astrocytes are involved in inhibitory neuronal transmission.
The clearance of debris after injuries to the nervous system is a critical step for restoration of the injured neural network. Microglia are thought to be involved in elimination of degenerating neurons and axons in the central nervous system (CNS), presumably restoring a favorable environment after CNS injuries. However, the mechanism underlying debris clearance remains elusive. Here, we establish an in vitro assay system to estimate phagocytosis of axon debris. We employed a Wallerian degeneration model by cutting axons of the cortical explants. The cortical explants were co-cultured with primary microglia or the MG5 microglial cell line. The cortical neurites were then transected. MG5 cells efficiently phagocytosed the debris, whereas primary microglia showed phagocytic activity only when they were activated by lipopolysaccharide or interferon-. When MG5 cells or primary microglia were co-cultured with degenerated axons, p38 mitogen-activated protein kinase (MAPK) was activated in these cells. Engulfment of axon debris was blocked by the p38 MAPK inhibitor SB203580, indicating that p38 MAPK is required for phagocytic activity. Receptors that recognize dying cells appeared not to be involved in the process of phagocytosis of the axon debris. In addition, the axons undergoing Wallerian degeneration did not release lactate dehydrogenase, suggesting that degeneration of the severed axons and apoptosis may represent two distinct self-destruction programs. We observed regrowth of the severed neurites after axon debris was removed. This finding suggests that axon debris, in addition to myelin debris, is an inhibitory factor for axon regeneration.
Microglia are generally considered the immune cells of the central nervous system. Recent studies have demonstrated that under specific polarization conditions, microglia develop into two different phenotypes, termed M1-like and M2-like microglia. However, the phenotypic characteristics of M1-like- and M2-like-polarized microglia and the mechanisms that regulate polarization are largely unknown. In this study, we characterized lipopolysaccharide-treated M1-like and IL-4-treated M2-like microglia and investigated the mechanisms that regulate phenotypic switching. The addition of M2-like microglial conditioned medium (CM) to primary neurons resulted in an increase in neurite length when compared with neurons treated with M1-like microglial CM, possibly because of the enhanced secretion of neurotrophic factors by M2-like microglia. M1-like microglia were morphologically characterized by larger soma, whereas M2-like microglia were characterized by long processes. M2-like microglia exhibited greater phagocytic capacity than M1-like microglia. These features switched in response to polarization cues. We found that expression of interferon regulatory factor 7 (IRF7) increased during the M2-like to M1-like switch in microglia in vitro and in vivo. Knockdown of IRF7 using siRNA suppressed the expression of M1 marker mRNA and reduced phosphorylation of STAT1. Our findings suggest that IRF7 signaling may play an important role in microglial polarization switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.