Virus-specific antibodies protect individuals against a wide variety of viral infections. To assess whether human immunodeficiency virus type 1 (HIV-1) envelope-specific antibodies confer resistance against primate lentivirus infections, we purified immunoglobulin (IgG) from chimpanzees infected with several different HIV-1 isolates, and used this for passive immunization of pig-tailed macaques. These monkeys were subsequently challenged intravenously with a chimeric simian-human immunodeficiency virus (SHIV) bearing an envelope glycoprotein derived form HIV-1DH12, a dual-tropic primary virus isolate. Here we show that anti-SHIV neutralizing activity, determined in vitro using an assay measuring loss of infectivity, is the absolute requirement for antibody-mediated protection in vivo. Using an assay that measures 100% neutralization, the titer in plasma for complete protection of the SHIV-challenged macaques was in the range of 1:5-1:8. The HIV-1-specific neutralizing antibodies studied are able to bind to native gp120 present on infectious virus particles. Administration of non-neutralizing anti-HIV IgG neither inhibited nor enhanced a subsequent SHIV infection.
The concentration of human immunodeficiency virus type 1 (HIV-1) particles in blood plasma is very predictive of the subsequent disease course in an infected individual; its measurement has become one of the most important parameters for monitoring clinical status. Steady-state virus levels in plasma reflect a balance between the rates of virions entering and leaving the peripheral blood. We analyzed the rate of virus clearance in the general circulation in rhesus macaques receiving a continuous infusion of cell-free particles in the presence and absence of virus-specific antibodies. Here we show, by measuring virion RNA, particle-associated p24 Gag protein and virus infectivity, that the clearance of physical and infectious particles from a primary, dual-tropic virus isolate, HIV-1DH12, is very rapid in naive animals, with half-lives ranging from 13 to 26 minutes. In the presence of high-titer HIV-1DH12-specific neutralizing antibodies, the half-life of virion RNA was considerably reduced (to 3.9-7.2 minutes), and infectious virus in the blood became undetectable. Although physical virus particles were eliminated extravascularly, the loss of virus infectivity in the blood reflected the combined effects of extravascular clearance and intravascular inactivation of HIV-1 infectivity due to antibody binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.