Summary Metabolic disorders including obesity and insulin resistance have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5−/− and Pla2g2e−/− mice revealed distinct and previously unrecognized roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia and obesiy. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of “metabolic sPLA2s” adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators.
Chiral supramolecular nanostructures with optoelectronic functions are expected to play a central role in many scientific and technological fields but their practical use remains in its infancy. Here, this paper reports photoconductive chiral organic semiconductors (OSCs) based on perylene diimides with the highest electron mobility among the chiral OSCs and investigates the structure and optoelectronic properties of their homochiral and heterochiral supramolecular assemblies from bottom-up self-assembly. Owing to the well-ordered supramolecular packing, the homochiral nanomaterials exhibit superior charge transport with significantly higher photoresponsivity and dissymmetry factor compared with those of their thin film and monomeric equivalents, which enables highly selective detection of circularly polarized light, for the first time, in visible spectral range. Interestingly, the heterochiral nanostructures assembled from co-self-assembly of racemic mixtures show extraordinary chiral self-discrimination phenomenon, where opposite enantiomeric molecules are packed alternately into heterochiral architectures, leading to completely different optoelectrical performances. In addition, the crystal structures of homochiral and heterochiral nanostructures have first been studied by ab initio X-ray powder diffraction analysis. These findings give insights into the structure-chiroptical property relationships of chiral supramolecular self-assemblies and demonstrate the feasibility of supramolecular chirality for high-performance chiroptical sensing.
Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell–deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS–ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3–L-PGDS–DP1 loop that drives mast cell maturation.
We synthesized for the first time a series of emissive ring-shaped Re(I) complexes (Re-rings) with various numbers of Re(I) units and various lengths of bridge ligands. The photophysical properties of the Re-rings could be varied widely through changes in the size of the central cavity. A smaller central cavity of the Re-rings induced intramolecular π-π interactions between the ligands and consequently caused a stronger emission and a longer lifetime of the excited state. The Re-rings can function as efficient and durable photosensitizers. The combination of a trinuclear Re-ring photosensitizer with fac-[Re(bpy)(CO)3(MeCN)](+) (bpy = 2,2'-bipyridine) as a catalyst photocatalyzed CO2 reduction with the highest quantum yield of 82%.
A series of rhenium(I) diimine complexes cis,trans-[Re(dmb)(CO)(2)(PR(1)R(2)R(3))(PR(4)R(5)R(6))](+) (dmb=4,4'-dimethyl-2,2'-bipyridine, R(n)=phenyl or alkyl), each of which bears two phosphine ligands with various numbers of phenyl groups, has been synthesized by using the photochemical ligand-substitution reaction. Detailed studies of the structural features, not only in the crystal but also in solution, indicate that the number of phenyl groups is a crucial factor in controlling the rotational conformation of the phosphine ligands, which in turn determines the extent of the π-π interaction between the aromatic diimine ligand and the phenyl group(s). The π-π interaction strongly affected both electrochemical and photophysical properties: 1) the oxidation power of the Re complex became stronger, 2) the lifetime of the excited state became longer, and 3) the Stokes shift between the (1) MLCT absorption band and emission from the corresponding (3) MLCT excited state became smaller. In particular, the diphenyl and triphenyl phosphine had much greater influence on the properties than the monophenyl phosphine ligand. Dual emission was observed from the different rotational conformers of the complexes with an intermediate number of phenyl groups in the phosphine ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.