SUMMARYOxygen is essential for the survival of animals. Red blood cells in the circulation, i.e. peripheral erythrocytes, are responsible for transporting oxygen to tissues. The regulation of erythropoiesis in vertebrates other than mammals is yet to be elucidated. Recently we identified erythropoietin, a primary regulator of erythropoiesis, in Xenopus laevis, which should enable us to identify target cells, including erythroid progenitors, and to investigate the production and development of erythroid cells in amphibians. Here, we established a semi-solid colony-forming assay in Xenopus laevis to clarify the existence of colony-forming unit-erythroid cells, the functional erythroid progenitors identified in vitro. Using this assay, we showed that recombinant xlEPO induces erythroid colony formation in vitro and detected an increased level of erythropoietin activity in blood serum during acute anemic stress. In addition, our study demonstrated the possible presence of multiple, non-xlEPO, factors in anemic serum supportive of erythroid colony formation. These results indicate that erythropoiesis mediated by erythropoietin is present in amphibian species and, furthermore, that the regulatory mechanisms controlling peripheral erythrocyte number may vary among vertebrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.