Currently, 3D printing has been attracting attention as a new method of prototyping and manufacturing. However, in the case of molding of the shell shaped resin, products by the additive manufacturing method has low strength of the interlayer adhesion and low stiffness of the light curing resin. For these reasons it is difficult to achieve the equivalent strength to injection-molded products.In study, in order to improve the strength of shell shape 3D printing, the authors propose a novel forming method by means of CFRTP and a forming system based on CAD data with local heating system, which can maintain the target formable temperature by a feedback control system was developed.
A three-dimensional (3D) printer can be used to form various shapes in a single process. However, shell shape formation is difficult because of the low adhesion strength between the layers in 3D printing, and sufficient stiffness cannot be maintained. Therefore, the authors focused on laser-assisted incremental forming, which enables the formation of shell shapes from sheet materials, and used carbon fiber reinforced thermo plastic (CFRTP) for the samples. In the study, a laser-assist incremental forming system based on 3D computer-aided design (CAD) data was developed. The system comprises computer-aided manufacturing (CAM) system, which generates a tool path based on CAD data and evaluates the formability between the CAD data and 3D-scanned data, including alignment compensation. The feasibility of the developed system was demonstrated through a set of forming experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.