Mg codoping into Eu-doped GaN (GaN:Eu) changed the dominant optical site and increased the photoluminescence (PL) intensity at room temperature (RT). From the ratio of PL integrated intensity at 25 K to that at 300 K, PL efficiency of the GaN:Eu,Mg layer was evaluated to be as high as 77%. On the basis of this experiment, GaN:Eu-based LEDs grown by NH3 MBE were fabricated. Clear rectification characteristics with a turn-on voltage of 3.2 V were observed and a pure red emission was observed by the naked eye at RT. For the electroluminescence (EL) spectra, two predominant peaks of higher-efficiency optical sites A and C were selectively enhanced and the EL intensity was improved. This result suggests that GaN:Eu was very effective for realizing red-light-emitting devices using the nitride semiconductor.
Mg codoping into Eu-doped GaN strongly affects the two dominant optical sites A (620.3 nm) and B (622.3 nm) and dramatically improves the optical characteristics obtained from Eu 3þ ions. To clarify the mechanism of the enhanced emission, the effects of the Mg concentration on the excitation and emission processes were evaluated by considering the excitation power dependence of photoluminescence (PL) and time-resolved PL at various temperatures. The excitation cross section r ex , which reflected the excitation process, did not depend on the Mg concentration but strongly on the optical site, which was attributed to the different energy transfer processes of the two optical sites. r ex for site A was three times larger than that for site B, indicating higher excitation efficiency for site A. Mg codoping dramatically increased the number of Eu ions in site A that remain active at room temperature (RT) and the 5 D 0 lifetime at RT, indicating the suppression of nonradiative components during the emission process. Therefore, the optical properties were markedly enhanced by Mg codoping. V C 2013 American Institute of Physics. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.