Recent evidence shows that high supply ratios of light and nutrients limit planktonic herbivore growth by lowering the nutritional quality of algae. Over longer time scales, however, grazers may ameliorate this effect by their impact on nutrient cycling. We examine this possibility using two species of the herbivorous zooplankter Daphnia and its algal prey under different light intensities and low phosphorus supply in laboratory microcosms. At high light, Daphnia biomass was limited for a substantial period because of low P content of algal cells. However, a gradual increase in Daphnia density eventually improved food quality through grazing and nutrient cycling and via a novel process involving positive density dependence. Competitive exclusion of one of the two Daphnia species occurred under low light but not under high light when algae were nutritionally unsuitable. Such stoichiometrically mediated interactions among herbivorous animals may represent important mechanisms that affect community structure and material flows in ecosystems.
Diel changes in bacterial ingestion by a mixotrophic flagellate, Cryptomonas sp., and heterotrophic nanoflagellates (HNF) were examined in situ at 4-h intervals for 2 d in the epilimnion and metalimnion of Lake Biwa using bacteria-sized fluorescent microspheres as a tracer food. Clearance rates of HNF for the microspheres ranged between 1.3 and 4.5 nl cell Ϫ1 h Ϫ1 , but the average rate did not differ between day and night. In contrast, clear diel changes were observed in the clearance rate of Cryptomonas sp. in the epilimnion from Ͻ0.5 nl cell Ϫ1 h Ϫ1 at midnight to Ͼ3 nl cell Ϫ1 h Ϫ1 at noon. In the metalimnion where light intensity was lower, however, the clearance rate of Cryptomonas sp. was always Ͻ0.5 nl cell Ϫ1 h Ϫ1 through the study period. Thus, bacterial ingestion of Cryptomonas sp. is not to acquire supplementary energy or carbon at low phototrophic activities. During the study period, both inorganic phosphorus and nitrogen concentrations were less than or close to the detection limits (10 nM P and 1 M N) in the epilimnion, but much higher in the metalimnion. The results strongly support the idea that Cryptomonas sp. utilizes N and P from bacteria as substitutable nutrients when photosynthesis takes place under conditions of nutrient depletion. To assess the grazing effect of mixotrophic algae on bacterial populations, it is essential to consider diel changes in their phagotrophic mode of nutrition that are induced by light regime and nutrient concentrations in ambient water.
We measured primary production by phytoplankton in the south basin of Lake Baikal, Russia, by in situ 13 Cbicarbonate incubations within the period March-October in two consecutive years (1999 and 2000). Primary production was highest in the subsurface layer, possibly due to near-surface photoinhibition of photosynthesis, even under 0.8 m of ice cover in March. Areal primary production varied from 79 mg C m Ϫ2 day Ϫ1 (March) to 424 mg C m Ϫ2 day Ϫ1 (August), and annual primary production was roughly estimated as 75 g C m Ϫ2 year Ϫ1 , both of which are within the lower range of previous estimates. Size fractionation measurements revealed that phytoplankton in the Ͻ20 µm fraction accounted for 72%, 96%, and 85% of total primary production in March, August, and October, respectively. The contribution of picophytoplankton (Ͻ2 µm) to total primary production ranged from 41% to 62%. A large fraction (82%-98%) of particulate organic carbon was associated with particles in the Ͻ20 µm fraction. These results suggest that nano-and picophytoplankton play an important role as primary producers in the pelagic ecosystem of Lake Baikal.
Simple correlation and multiple regression analyses were performed to examine the relationship between primary productivity and environmental factors in the north basin of Lake Biwa. The primary production rates used in the analyses were estimated monthly or bimonthly during the growing season (April–November) in 1992, 1996 and 1997 with the 13C method. Elemental (C, N and P) contents of seston were used to assess nutrient conditions. Analyses revealed that 86% of variance in depth‐integrated primary production rates (areal PP) can be explained by changes in light intensity, and sestonic C, N and P concentrations. Water temperature had no effect on areal PP. To assess relative effects of light and nutrients on PP, the P:B ratio was estimated by normalizing PP with sestonic C. The areal P:B ratio correlated most significantly with the sestonic N:P ratio, followed by light intensity. When regression analyses were made at each depth, however, the P:B ratio correlated significantly only with the sestonic N:P ratio at 0 and 1 m depths, while light intensity was also incorporated into the regressions at deeper than 2.5 m. In these regressions, the P:B ratio was negatively correlated with sestonic N:P ratio but positively with light intensity. The results suggest that the primary production rate in this lake was mainly limited by P relative to N supply rates, but was not free from light limitation in a large part of the epilimnion. In Lake Biwa, the vertical water mixing regime as well as the nutrient supply seem to be important in determining the growth and composition of primary producers, since the surface mixing layer extends into 10–15 m depths during most of the growing season.
A highly sensitive method to analyze the intact lipids in a single zooplankter individual at the level of a few tenths of a microgram was developed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with a direct sampling technique. The sampling procedure involved (1) putting a zooplankter individual sample onto the MALDI sample plate, (2) cutting the sample into a few pieces by means of tweezers, (3) depositing aliquots of matrix and cationization reagent solutions on the zooplankter sample, and (4) irradiating with a N2 laser to cause MALDI. By using this technique, the mass spectra of the single zooplankter samples showed a series of ions generated from phospholipids with 34 or 36 carbons in the acyl groups and neutral lipids such as triglycerides and diacylglyceryl ethers with 50-54 carbons in their acyl and alkenyl groups. Accordingly, this method enabled us to estimate the relative quantity between "structured lipids" (phospholipids) and "storage lipids" (neutral lipids) in an individual zooplankter, which should give us a good clue to elucidate the roles of each class of lipids in its growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.