SUMMARYIn next generation wireless network, significantly higher rate data services of close to 1 Gpbs are expected. The wireless channels for such a broadband data transmission become severe frequency-selective. Frequency-domain equalisation (FDE) technique may play an important role for broadband data transmission using multi-carrier (MC)-and direct-sequence code division multiple access (DS-CDMA). The performance can be further improved by the use of multi-input/multi-output (MIMO) antenna diversity technique. The downlink performance is significantly improved with FDE. However, the uplink performance is limited by the multiple access interference (MAI). To remove the MAI while gaining the frequency diversity effect through the use of FDE, two-dimensional (2D) block spread CDMA can be used. Recently, particular attention has been paid to MIMO space division multiplexing (SDM) to significantly increase the throughput without expanding the signal bandwidth. In this paper, we present a comprehensive performance comparison of MC-and DS-CDMA using FDE.
One of the promising wireless access techniques for the next generation mobile communications systems is multi-carrier code division multiple access (MC-CDMA). MC-CDMA can provide good transmission performance owing to the frequency diversity effect in a severe frequency-selective fading channel. However, the bit error rate (BER) performance of coded MC-CDMA is inferior to that of orthogonal frequency division multiplexing (OFDM) due to the residual inter-code interference (ICI) after frequency-domain equalization (FDE). Recently, we proposed a frequency-domain soft interference cancellation (FDSIC) to reduce the residual ICI and confirmed by computer simulation that the MC-CDMA with FDSIC provides better BER performance than OFDM. However, ideal channel estimation was assumed. In this paper, we propose adaptive decision-feedback channel estimation (ADFCE) and evaluate by computer simulation the average BER and throughput performances of turbo-coded MC-CDMA with FDSIC. We show that even if a practical channel estimation is used, MC-CDMA with FDSIC can still provide better performance than OFDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.