Access to this document was granted through an Emerald subscription provided by emeraldsrm: 463575 []
For AuthorsIf you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.Abstract. The boundary element method is a useful method for the analysis of field problems involving unbounded regions. Therefore, the method can be used advantageously in combination with the finite element method. This is sometimes called a combination method and it is suitable as a picture-frame technique. Although this technique attains good accuracy, the matrix of the discretized equation is not banded, since it is a dense matrix. In this paper, we propose an infinite boundary element which divides the unbounded region radially. By the use of this element, the bandwidth of the discretized system matrix does not increase beyond that of the finite element region and its original matrix structure is maintained. The infinite boundary element can also be applied to homogeneous unbounded field problems, for which the Green's function of the mirror image is difficult to use.To illustrate the validity of the proposed technique, some numerical calculations are demonstrated and the results are compared with those of the usual combination method and the method using the hybrid-type infinite element.
In this paper, we monitored the electromagnetic waves generated by human activity. We investigated a monitoring system that used the bioelectric potential of a plant. Four subjects walked on the spot at a distance of 60 cm from a rubber tree and we measured the variation in the bioelectric potential of the tree produced by the stepping motion. The results confirmed that the electromagnetic waves generated by a person walking on the spot produced a measurable response in the bioelectric potential of a plant. It was also found that this variation in the bioelectric potential varied in synchrony with the subject's walking pace.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.