A unique nitriding technique with the use of an atmospheric-pressure pulsed-arc plasma jet has been developed to offer a non-vacuum, easy-to-operate process of nitrogen doping to metal surfaces. This technique, however, suffered from a problem of excess nitrogen supply due to the high pressure results in undesirable formation of voids and iron nitrides in the treated metal surface. To overcome this problem, we have first established a method to control the nitrogen dose amount supplied to the steel surface in the relevant nitriding technique. When the hydrogen fraction in the operating gas of nitrogen/hydrogen gas mixture increased from 1% up to 5%, the nitrogen density of the treated steel surface drastically decreased. As a result, the formation of voids were suppressed successfully. The controllability of the nitrogen dose amount is likely attributable to the density of NH radicals existing in the plume of the pulsed-arc plasma jet.
The brittle-to-ductile transition (BDT) behaviour in nickel-free austenitic stainless steel with high nitrogen was investigated. Fall-weight impact tests revealed that Fe-25mass%Cr-1.1mass%N austenitic steel exhibits a sharp BDT behaviour in spite of an fcc alloy. The aspects of plastic deformation after the impact tests indicate that the BDT observed in this austenitic steel is induced by poor ductility at low temperatures as is the same as that in ferritic steels. In order to measure the activation energy for the BDT, the strain rate dependence of the BDT temperature was examined by using four-point bending tests. The weak dependence of the BDT temperature on the strain rate was observed. The Arrhenius plot of the BDT temperature against the strain rate elucidated that the activation energy for the BDT of Fe-25mass%Cr-1.1mass%N is much higher than that of low carbon ferritic steels. The origins of such distinct BDT behaviour and its large value of the activation energy in this high-nitrogen steel are discussed in terms of the reduction of dislocation mobility at low temperatures due to the interaction between glide dislocations and nitrogen solute atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.