We propose a novel on-chip enucleation of an oocyte with zona pellucida by using a combination of untethered microrobots. To achieve enucleation within the closed space of a microfluidic chip, two microrobots, a microknife and a microgripper were integrated into the microfluidic chip. These microrobots were actuated by an external magnetic force produced by permanent magnets placed on the robotic stage. The tip of the microknife was designed by considering the biological geometric feature of an oocyte, i.e. the oocyte has a polar body in maturation stage II. Moreover, the microknife was fabricated by using grayscale lithography, which allows fabrication of three-dimensional microstructures. The microgripper has a gripping function that is independent of the driving mechanism. On-chip enucleation was demonstrated, and the enucleated oocytes are spherical, indicating that the cell membrane of the oocytes remained intact. To confirm successful enucleation using this method, we investigated the viability of oocytes after enucleation. The results show that the production rate, i.e. the ratio between the number of oocytes that reach the blastocyst stage and the number of bovine oocytes after nucleus transfer, is 100%. The technique will contribute to complex cell manipulation such as cell surgery in lab-on-a-chip devices.
Modulation of shock foot oscillation due to energy deposition by repetitive laser pulses in shock wave-boundary layer interaction over an axisymmetric nose-cylinder-flare model in Mach 1.92 flow was experimentally studied. From a series of 256 schlieren images, density oscillation spectra at each pixel were obtained. When laser pulses of approximately 7 mJ were deposited with a repetition frequency, fe, of 30 kHz or lower, the flare shock oscillation had a peak spectrum equivalent to the value of fe. However, with fe of 40 kHz–60 kHz, it experienced frequency modulation down to lower than 20 kHz.
Supersonic drag reduction performance using repetitive pulse energy depositions over blunt bodies was experimentally studied under two Mach numbers. The normalized drag reduction and energy deposition efficiency of Mach-1.92 over a 10-mm-dia. blunt-cylinder model were 8% and 1.2 at most, respectively. On the other hand, these values at Mach-3.20 over the same model were 22% and 6.2, respectively. The shock-wave deformation period using single-pulse energy deposition at Mach-3.20 was 64 ®s. This duration was shorter than that of 80 ®s at Mach-1.92, but the deformation magnitude on the model center axis of 40% at Mach-3.20 was larger than that of 15% at Mach-1.92. These experimental characteristics were consistent as solutions of the Riemann problem. Moreover, a drag reduction performance was much improved with a larger model diameter of 20 mm. Therefore, it has been experimentally demonstrated that the drag reduction performance due to energy deposition improves much at a high Mach number and with large model dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.