Retroviral reverse transcription is accomplished by sequential strand-transfers of partial cDNA intermediates copied from viral genomic RNA. Here, we revealed an unprecedented role of 5′-end guanosine (G) of HIV-1 genomic RNA for reverse transcription. Based on current consensus for HIV-1 transcription initiation site, HIV-1 transcripts possess a single G at 5′-ends (G1-form). However, we found that HIV-1 transcripts with additional Gs at 5′-ends (G2- and G3-forms) were abundantly expressed in infected cells by using alternative transcription initiation sites. The G2- and G3-forms were also detected in the virus particle, although the G1-form predominated. To address biological impact of the 5′-G number, we generated HIV clone DNA to express the G1-form exclusively by deleting the alternative initiation sites. Virus produced from the clone showed significantly higher strand-transfer of minus strong-stop cDNA (-sscDNA). The in vitro assay using synthetic HIV-1 RNAs revealed that the abortive forms of -sscDNA were abundantly generated from the G3-form RNA, but dramatically reduced from the G1-form. Moreover, the strand-transfer of -sscDNA from the G1-form was prominently stimulated by HIV-1 nucleocapsid. Taken together, our results demonstrated that the 5′-G number that corresponds to HIV-1 transcription initiation site was critical for successful strand-transfer of -sscDNA during reverse transcription.
A major problem when analyzing bionanoparticles such as influenza viruses (approximately 100 nm in size) is the low sample concentrations. We developed a method for manipulating a single virus that employs optical tweezers in conjunction with dielectrophoretic (DEP) concentration of viruses on a microfluidic chip. A polydimethylsiloxane microfluidic chip can be used to stably manipulate a virus. The chip has separate sample and analysis chambers to enable quantitative analysis of the virus functions before and after it has infected a target cell. The DEP force in the sample chamber concentrates the virus and prevents it from adhering to the glass substrate. The concentrated virus is transported to the sample selection section where it is trapped by optical tweezers. The trapped virus is transported to the analysis chamber and it is brought into contact with the target cell to infect it. This paper describes the DEP virus concentration for single virus infection of a specific cell. We concentrated the influenza virus using the DEP force, transported a single virus, and made it contact a specific H292 cell.
Introduction
Our previous clinical studies have demonstrated the short-term efficacy and safety of the sirolimus gel for patients with tuberous sclerosis complex (TSC). However, long-term clinical evidence is lacking. Our objective was to assess the safety and efficacy of long-term treatment with the sirolimus gel for the skin lesions of TSC patients.
Methods
We conducted a multicenter, open-label, uncontrolled clinical trial in 94 Japanese
patients with TSC. Patients applied the 0.2% sirolimus gel on their face or head twice daily for > 52 weeks (maximum 136 weeks for safety). The safety endpoints were the rate of adverse event (AE)-caused discontinuation (primary endpoint) and the incidence of AEs. The efficacy endpoint was the response rate of angiofibromas, cephalic plaques, and hypomelanotic macules.
Results
Among 94 enrolled patients (mean age, 21 years; range 3–53 years), the rate of AE-caused discontinuation was 2.1% (2/94 patients). Although application site irritation and dry skin occurred relatively frequently, none of the drug-related AEs were serious; most of the drug-related AEs resolved rapidly. The major drug-related AEs (≥ 5% in incidence) were application site irritation (30.9%), dry skin (27.7%), acne (20.2%), eye irritation (8.5%), pruritus (8.5%), erythema (7.4%), dermatitis acneiform (6.4%), and dermatitis contact (5.3%). The response rates of angiofibromas, cephalic plaques, and hypomelanotic macules were 78.2% [95% confidence interval (CI) 68.0–86.3%], 66.7% (95% CI 51.1–80.0%), and 72.2% (95% CI 46.5–90.3%), respectively.
Conclusions
The gel was well tolerated for a long time by patients with TSC involving facial skin lesions and continued to be effective.
Trial Registration
ClinicalTrials.gov identifier: NCT02634931.
Nonenzymatic roles for HIV-1 integrase (IN) at steps prior to the enzymatic integration step have been reported. To obtain structural and functional insights into the nonenzymatic roles of IN, we performed genetic analyses of HIV-1 IN, focusing on a highly conserved Tyr15 in the N-terminal domain (NTD), which has previously been shown to regulate an equilibrium state between two NTD dimer conformations. Replacement of Tyr15 with alanine, histidine, or tryptophan prevented HIV-1 infection and caused severe impairment of reverse transcription without apparent defects in reverse transcriptase (RT) or in capsid disassembly kinetics after entry into cells. Cross-link analyses of recombinant IN proteins demonstrated that lethal mutations of Tyr15 severely impaired IN structure for assembly. Notably, replacement of Tyr15 with phenylalanine was tolerated for all IN functions, demonstrating that a benzene ring of the aromatic side chain is a key moiety for IN assembly and functions. Additional mutagenic analyses based on previously proposed tetramer models for IN assembly suggested a key role of Tyr15 in facilitating the hydrophobic interaction among IN subunits, together with other proximal residues within the subunit interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.