Fewer than 1% of vertebrate species are hermaphroditic, and essentially all of these are fishes. Four types of hermaphroditism are known in fishes: simultaneous (or synchronous) hermaphroditism (SH), protandry (male-to-female sex change; PA), protogyny (female-to-male sex change; PG), and bidirectional sex change (BS or reversed sex change in protogynous species). Here we present an annotated list of hermaphroditic fish species from a comprehensive review and careful re-examination of all primary literature. We confirmed functional hermaphroditism in more than 450 species in 41 families of 17 teleost orders. PG is the most abundant type (305 species of 20 families), and the others are much less abundant, BS in 66 species of seven families, SH in 55 species of 13 families, and PA in 54 species of 14 families. The recently proposed phylogenetic tree indicated that SH and PA have evolved several times in not-closely related lineages of Teleostei but that PG (and BS) has evolved only in four lineages of Percomorpha. Examination of the relation between hermaphroditism type and mating system in each species mostly supported the size-advantage model that predicts the evolution of sequential hermaphroditism. Finally, intraspecific variations in sexual pattern are discussed in relation to population density, which may cause variation in mating system.
We investigated the territoriality and the spatial and mating relationships of the haremic hawkfish, Cirrhitichthys falco, on a reef off Kuchierabu-jima Island in southern Japan. Each individual maintained a territorial home range which was defended against same-sex conspecifics at the boundary of the home range. The territory of each male encompassed the territories of 2-3 females, allowing the male to completely monopolize mating opportunities with those females. Based on our observations, we classified the harem type of C. falco as a territorial female type. Large juveniles maintained independent home ranges outside the female territories. In contrast, small juveniles were allowed to cohabit within the territory of an adult female. Stomach contents analysis revealed that the smallest size class of C. falco fed primarily on copepods. In contrast, all other size classes fed primarily on decapods. Together, these results suggest that female territoriality plays an important role in defending food resources.
Sex change, either protogyny (female to male) or protandry (male to female), is well known among fishes, but evidence of bidirectional sex change or reversed sex change in natural populations is still very limited. This is the first report on female removal experiments for polygnous and protogynous fish species to induce reversed sex change in the widowed males in the field. We removed all of the females and juveniles from the territories of dominant males in the cleaner wrasse Labroides dimidiatus (Labridae) and the rusty angelfish Centropyge ferrugata (Pomacanthidae) on the coral reefs of Okinawa. In both species, if new females or juveniles did not immigrate into the territories of the widowed males, some of them emigrated to form male-male pairs. When a male-male pair formed, the smaller, subordinate partner began to perform female sexual behaviours (n = 4 in L. dimidiatus; n = 2 in C. ferrugata) and, finally, released eggs (n = 1, respectively). Thus, the reversed sex change occurred in the widowed males according to the change of their social status. These results suggest that such female removal experiments will contribute to the discovery of reversed sex change in the field also in other polygnous and protogynous species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.