We investigated cell death during glucose deprivation in rat cardiomyocyte-derived H9c2 cells. Electron microscopic analysis revealed accumulation of autophagic vacuoles during glucose deprivation. The addition of 3-methyladenine or LY294002, which are known to inhibit autophagosome formation, reduced cell death while Z-VAD-FMK, a caspase inhibitor, slightly affected cell death. Thus, cell death during glucose deprivation is not type I programmed cell death (apoptotic cell death) but type II programmed cell death (autophagic cell death). Moreover, we found that both insulin-like growth factor-I and the adenovirus-mediated overexpression of wild-type class I PI 3-kinase accelerated cell death as well as accumulation of autophagic vacuoles during glucose deprivation while dominant-negative PI 3-kinase reduced these phenomena. The results indicate that IGF-I/PI 3-kinase accelerates the accumulation of autophagic vacuoles and subsequent autophagic cell death during glucose deprivation, revealing the opposing role of IGF-I/ PI 3-kinase in two distinct types of programmed cell death (apoptotic and autophagic cell death).
It is postulated that the hepatotoxicity of valproic acid (VPA) results from the mitochondrial beta-oxidation of its cytochrome P450 metabolite, 2-propyl-4-pentenoic acid (4-ene VPA), to 2-propyl-(E)-2,4-pentadienoic acid ((E)-2,4-diene VPA) which, in the CoA thioester form, either depletes GSH or produces a putative inhibitor of beta-oxidation enzymes. In order to test this hypothesis, 2-fluoro-2-propyl-4-pentenoic acid (alpha-fluoro-4-ene VPA) which was expected to be inert to beta-oxidative metabolism was synthesized and its effect on rat liver studied in comparison with that of 4-ene VPA. Similarly, the known hepatotoxicant 4-pentenoic acid (4-PA) and 2,2-difluoro-4-pentenoic acid (F2-4-PA) were compared. Male Sprague-Dawley rats (150-180 g, 4 rats per group) were dosed ip with 4-ene VPA (0.7 mmol/kg per day), 4-PA (1.0 mmol/kg per day), or equivalent amounts of their alpha-fluorinated analogues for 5 days. Both 4-ene VPA and 4-PA induced severe hepatic microvesicular steatosis ( > 85% affected hepatocytes), and 4-ene VPA produced mitochondrial alterations. By contrast, alpha-fluoro-4-ene VPA and F2-4-PA were not observed to cause morphological changes in the liver. The major metabolite of 4-ene VPA in the rat urine and serum was the beta-oxidation product (E)-2,4-diene VPA. The N-acetylcysteine (NAC) conjugate of (E)-2,4-diene VPA was also found in the urine. Neither (E)-2,4-diene VPA nor the NAC conjugate could be detected in the rats administered alpha-fluoro-4-ene VPA. In a second set of rats (3 rats per group), total liver GSH levels were determined to be depleted to 56% and 72% of control following doses of 4-ene VPA (1.4 mmol/kg) and equivalent alpha-fluoro-4-ene VPA, respectively. Mitochondrial GSH remained unchanged in the alpha-fluoro-4-ene VPA treated group but was reduced to 68% of control in the rats administered 4-ene VPA. These results strongly support the theory that hepatotoxicity of 4-ene VPA, and possibly VPA itself, is mediated largely through beta-oxidation of 4-ene VPA to reactive intermediates that are capable of depleting mitochondrial GSH.
Ethanol metabolism-induced lipogenesis may trigger the SNS-activated HSCs feedback loop, and then induct the activated HSCs and the activated HSCs-derived TNF-α, the mediator of lipogenesis, overproduction. Carvedilol may block this feedback loop via antisympathetic activity and demonstrate its preventive role on the development of hepatosteatosis in rat with AFLD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.