For ischemic stroke treatment, extension of the therapeutic time window (TTW) of thrombolytic therapy with tissue plasminogen activator (tPA) and amelioration of secondary ischemia/reperfusion (I/R) injury are most desirable. Our previous studies have indicated that liposomal delivery of neuroprotectants into an ischemic region is effective for stroke treatment. In the present study, for solving the above problems in the clinical setting, the usefulness of combination therapy with tPA and liposomal fasudil (fasudil-Lip) was investigated in ischemic stroke model rats with photochemically induced thrombosis, with clots that were dissolved by tPA. Treatment with tPA 3 h after occlusion markedly increased blood-brain barrier permeability and activated matrix metalloproteinase (MMP)-2 and -9, which are involved in cerebral hemorrhage. However, an intravenous administration of fasudil-Lip before tPA markedly suppressed the increase in permeability and the MMP activation stemming from tPA. The combination treatment showed significantly larger neuroprotective effects, even in the case of delayed tPA administration compared with each treatment alone or the tPA/fasudil-treated group. These findings suggest that treatment with fasudil-Lip before tPA could decrease the risk of tPA-derived cerebral hemorrhage and extend the TTW of tPA and that the combination therapy could be a useful therapeutic option for ischemic stroke.-Fukuta, T., Asai, T., Yanagida, Y., Namba, M., Koide, H., Shimizu, K., Oku, N. Combination therapy with liposomal neuroprotectants and tissue plasminogen activator for treatment of ischemic stroke.
FK506 (Tacrolimus) has the potential to decrease cerebral ischemia-reperfusion injury. However, the clinical trial of FK506 as a neuroprotectant failed due to adverse side effects. This present study aimed to conduct the selective delivery of FK506 to damaged regions, while at the same time reducing the dosage of FK506, by using a liposomal drug delivery system. First, the cytoprotective effect of polyethylene glycol-modified liposomes encapsulating FK506 (FK506-liposomes) on neuron-like pheochromocytoma PC12 cells was examined. FK506-liposomes protected these cells from H2O2-induced toxicity in a dose-dependent manner. Next, we investigated the usefulness of FK506-liposomes in transient middle cerebral artery occlusion (t-MCAO) rats. FK506-liposomes accumulated in the brain parenchyma by passing through the disrupted blood-brain barrier at an early stage after reperfusion had been initiated. Histological analysis showed that FK506-liposomes strongly suppressed neutrophil invasion and apoptotic cell death, events that lead to a poor stroke outcome. Corresponding to these results, a single injection of FK506-liposomes at a low dosage significantly reduced cerebral cell death and ameliorated motor function deficits in t-MCAO rats. These results suggest that liposomalization of FK506 could reduce the administration dose by enhancing the therapeutic efficacy; hence, FK506-liposomes should be a promising neuroprotectant after cerebral stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.