Several studies in hepatocyte cell lines reported that medium-chain fatty acids (MCFAs) with 6–12 carbons showed different metabolic properties from long-chain fatty acids (LCFAs). However, these studies reported unclear effects of different fatty acid molecules on hepatocyte metabolism. This study is aimed to capture the metabolic kinetics of MCFA assimilation in AML12 cells treated with octanoic acid (FA 8:0), decanoic acid (FA 10:0), or lauric acid (FA12:0) [LCFA; oleic acid (FA 18:1)] via metabolic profiling and dynamic metabolome analysis with 13C-labeling. The concentrations of total ketone bodies in the media of cells treated with FA 8:0 or FA 10:0 were 3.22- or 3.69-fold higher than those obtained with FA 18:1 treatment, respectively. FA 12:0 treatment did not significantly increase ketone body levels compared to DMSO treatment (control), whereas FA 12:0 treatment increased intracellular triacylglycerol (TG) levels 15.4 times compared to the control. Metabolic profiles of FA 12:0-treated samples differed from those of the FA 8:0-treated and FA 10:0-treated samples, suggesting that metabolic assimilation of MCFAs differed significantly depending on the MCFA type. Furthermore, the dynamic metabolome analysis clearly revealed that FA 8:0 was rapidly and quantitatively oxidized to acetyl-CoA and assimilated into ketone bodies, citrate cycle intermediates, and glucogenic amino acids but not readily into TGs.
Pyrosequencing system utilizing luciferase is one of the next-generation DNA sequencing systems. However, there is a crucial problem with the current pyrosequencing system: luciferase cannot discriminate between ATP and dATP completely, and dATPαS must be used as the dATP analogue. dATPαS is expensive and has low activity for the enzyme. If luciferase can clearly recognize the difference between ATP and dATP, dATP could be used instead of the expensive dATPαS in the pyrosequencing system. We attempted to prepare a novel luciferase with improved specific activity and dATP discrimination with the molecular display method. First, we selected two amino acid residues, Ser440 and Ser456, as target residues for mutation from the whole sequence of Photinus pyralis luciferase; we comprehensively mutated these two amino acids. A mutant luciferase library was constructed using yeast cell surface engineering. Through three step-wide screenings with individual conditions, we easily and speedily isolated three candidate mutants from 1,152 candidates and analyzed the properties of these mutants. Consequently, we succeeded in obtaining interesting mutant luciferases with improved specific activity and dATP discrimination more conveniently than with other methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.