Ire1 is an endoplasmic reticulum (ER)-located endoribonuclease that is activated in response to ER stress. In yeast Saccharomyces cerevisiae cells, Ire1 promotes HAC1-mRNA splicing to remove the intron sequence from the HAC1u mRNA (“u” stands for “uninduced”). The resulting mRNA, which is named HAC1i mRNA (“i” stands for “induced”), is then translated into a transcription factor that is involved in the unfolded protein response (UPR). In this study, we designed an oligonucleotide primer that specifically hybridizes to the exon-joint site of the HAC1i cDNA. This primer allowed us to perform real-time reverse transcription-PCR to quantify HAC1i mRNA abundance with high sensitivity. Using this method, we detected a minor induction of HAC1-mRNA splicing in yeast cells cultured at their maximum growth temperature of 39 °C. Based on our analyses of IRE1-gene mutant strains, we propose that when yeast cells are cultured at or near their maximum growth temperature, protein folding in the ER is disturbed, leading to a minor UPR induction that supports cellular growth.
Upon endoplasmic reticulum (ER) stress, eukaryotic cells commonly induce unfolded protein response (UPR), which is triggered, at least partly, by the ER stress sensor Ire1. Upon ER stress, Ire1 is dimerized or forms oligomeric clusters, resulting in the activation of Ire1 as an endoribonuclease. In ER-stressed Saccharomyces cerevisiae cells, HAC1 mRNA is spliced by Ire1, and then translated into a transcription factor that promotes the UPR. Herein we report that Ire1 tagged artificially with irrelevant peptides at the C terminus is almost completely inactive when only dimerized, while it induced the UPR as well as untagged Ire1 when clustered. This finding suggests a fundamental difference between the dimeric and clustered forms of Ire1. By comparing UPR levels in S. cerevisiae cells carrying artificially peptide-tagged Ire1 to that in cells carrying untagged Ire1, we estimated the self-association status of Ire1 under various ER stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.