Although amyloid fibrils are associated with numerous pathologies, their conformational stability remains largely unclear. Herein, we probe the thermal stability of various amyloid fibrils. α-Synuclein fibrils cold-denatured to monomers at 0-20 °C and heat-denatured at 60-110 °C. Meanwhile, the fibrils of β2-microglobulin, Alzheimer's Aβ1-40/Aβ1-42 peptides, and insulin exhibited only heat denaturation, although they showed a decrease in stability at low temperature. A comparison of structural parameters with positive enthalpy and heat capacity changes which showed opposite signs to protein folding suggested that the burial of charged residues in fibril cores contributed to the cold denaturation of α-synuclein fibrils. We propose that although cold-denaturation is common to both native proteins and misfolded fibrillar states, the main-chain dominated amyloid structures may explain amyloid-specific cold denaturation arising from the unfavorable burial of charged side-chains in fibril cores.
Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. Although the structural features of amyloid fibrils have become increasingly clearer, knowledge on the thermodynamics of fibrillation is limited. Furthermore, protein aggregation is not a target of calorimetry, one of the most powerful approaches used to study proteins. Here, with β 2 -microglobulin, a protein responsible for dialysis-related amyloidosis, we show direct heat measurements of the formation of amyloid fibrils using isothermal titration calorimetry (ITC). The spontaneous fibrillation after a lag phase was accompanied by exothermic heat. The thermodynamic parameters of fibrillation obtained under various protein concentrations and temperatures were consistent with the main-chain dominated structural model of fibrils, in which overall packing was less than that of the native structures. We also characterized the thermodynamics of amorphous aggregation, enabling the comparison of protein folding, amyloid fibrillation, and amorphous aggregation. These results indicate that ITC will become a promising approach for clarifying comprehensively the thermodynamics of protein folding and misfolding.enthalpy change | metastability | solubility | thermodynamic stability | thioflavin T A ggregation has often been an obstacle to studying the structure, function, and physical properties of proteins. However, a large number of aggregates associated with serious diseases, including Alzheimer's, Parkinson, and prion diseases (1, 2) promoted the challenge of studying protein misfolding and aggregation. Researchers succeeded in distinguishing amyloid fibrils and oligomers from other amorphous aggregates and characterized the ordered structures present in amyloid fibrils or oligomers, which led to the development of the field of amyloid structural biology (3-8). These advances have been attributed to various methodologies that are also useful for studying the structural properties of globular proteins. Even X-ray crystallography has become a powerful approach for studying amyloid microcrystals (5) or oligomers (9). The atomic details of amyloid fibrils are becoming increasingly clearer, and a cross-β structure was shown to be the main structural component of fibrils (5,6,8). Although tightly packed core regions of amyloid fibrils have been reported, the overall structures were shown to be dominated by common cross-β structures, which supported the argument for the mainchain dominated architecture in contrast to the side-chain dominated architecture of globular native states (10-12).These structural studies have been complemented by a series of efforts to clarify the mechanism for the formation of amyloid fibrils (i.e., amyloid fibrillation). The presence of a long lag time in spontaneous fibrillation and rapid fibrillation by the addition of preformed fibrils represent a similarity with the supersaturationlimited crystallization of substances (13-18). We have revisited "supersaturation" and argued its critical role for amyloid fibrill...
Amyloid fibrillation causes serious neurodegenerative diseases and amyloidosis; however, the detailed mechanisms by which the structural states of precursor proteins in a lipid membrane-associated environment contribute to amyloidogenesis still remains to be elucidated. We examined the relationship between structural states of intrinsically-disordered wild-type and mutant α-synuclein (αSN) and amyloidogenesis on two-types of model membranes. Highly-unstructured wild-type αSN (αSN) and a C-terminally-truncated mutant lacking negative charges (αSN) formed amyloid fibrils on both types of membranes, the model membrane mimicking presynaptic vesicles (Mimic membrane) and the model membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC membrane). Unstructured αSN and αSN both bound to Mimic membranes in a helical conformation with similar binding affinity. Promotion and then inhibition of amyloidogenesis of αSN were observed as the concentration of Mimic lipids increased. We explain this by the two-state binding model: at lower lipid concentrations, binding of αSN to membranes enhances amyloidogenicity by increasing the local concentration of membrane-bound αSN and so promoting amyloid nucleation; at higher lipid concentrations, membrane-bound αSN is actually in a sense diluted by increasing the number of model membranes, which blocks amyloid fibrillation due to an insufficient bound population for productive nucleation. Meanwhile, αSN formed amyloid fibrils over the whole concentration of Mimic lipids used here without inhibition, revealing the importance of helical structures for binding affinity and negatively charged unstructured C-terminal region for modulating amyloidogenesis. We propose that membrane binding-induced initial conformations of αSN, its overall charge states, and the population of membrane-bound αSN are key determinants of amyloidogenesis on membranes.
We herein report the mechanism of amyloid formation of amyloid-β (Aβ) peptides on small (SUV) and large unilamellar vesicles (LUVs), which consist of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Although Aβ formed fibrils on SUVs at all POPC concentrations used, the lag time, elongation rate, maximum thioflavin T intensity, and fibrillar morphology were distinct, indicating polymorphic amyloid formation. LUVs, at low POPC concentrations, did not markedly affect fibrillation kinetics; however, increases in POPC concentrations suppressed amyloid formation. No significant differences in the thermal stabilities of Aβ fibrils formed with and without vesicles were observed, although fibrils formed on SUVs showed some differences with dilution. SUVs markedly promoted Aβ fibrillation by condensing Aβ, whereas no effects of LUVs on amyloidogenesis were detected. Salts greatly increased Aβ amyloidogenicity on vesicles. We proposed comprehensive models for vesicle size-dependent Aβ amyloidogenesis. Inhomogeneous packing defects in SUVs may induce distinct nucleation in the polymorphisms of amyloids and decreasing local concentrations of Aβ with higher amounts of LUVs inhibits amyloid formation. We also pointed out that C-terminal hydrophobicity of Aβ is important for amyloidogenesis on membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.