In the prokaryotic two-component signal transduction systems, recognition of an environmental stimulus by a sensor molecule results in the activation of its histidine kinase domain and phosphorylation of a histidine residue within that domain. This phosphate group is then transferred to an aspartate residue in the receiver domain of a cognate response regulator molecule, resulting in the activation of its output function. Although a few eukaryotic proteins were identified recently that show sequence similarity to the prokaryotic sensors or response regulators, it has not been clear whether they constituted a part of a 'two-component' system. Here we describe a two-component system in Saccharomyces cerevisiae that regulates an osmosensing MAP kinase cascade.
An osmosensing mechanism in the budding yeast (Saccharomyces cerevisiae) involves both a two-component signal transducer (Sln1p, Ypd1p and Ssk1p) and a MAP kinase cascade (Ssk2p/Ssk22p, Pbs2p, and Hog1p). The transmembrane protein Sln1p contains an extracellular sensor domain and cytoplasmic histidine kinase and receiver domains, whereas the cytoplasmic protein Ssk1p contains a receiver domain. Ypd1p binds to both Sln1p and Ssk1p and mediates the multistep phosphotransfer reaction (phosphorelay). This phosphorelay system is initiated by the autophosphorylation of Sln1p at His576. This phosphate is then sequentially transferred to Sln1p-Asp-1144, then to Ypd1p-His64, and finally to Ssk1p-Asp554. We propose that the multistep phosphorelay mechanism is a universal signal transduction apparatus utilized both in prokaryotes and eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.