The conversion of widely available carboxylic acids into versatile boronic esters would be highly enabling for synthesis. We found that this transformation can be effected by illuminating the -hydroxyphthalimide ester derivative of the carboxylic acid under visible light at room temperature in the presence of the diboron reagent bis(catecholato)diboron. A simple workup allows isolation of the pinacol boronic ester. Experimental evidence suggests that boryl radical intermediates are involved in the process. The methodology is illustrated by the transformation of primary, secondary, and tertiary alkyl carboxylic acids as well as a diverse range of natural-product carboxylic acids, thereby demonstrating its broad utility and functional group tolerance.
We have developed the first example of hypervalent iodine(V)-catalyzed regioselective oxidation of phenols to o-quinones. Various phenols could be oxidized to the corresponding o-quinones in good to excellent yields using catalytic amounts of sodium salts of 2-iodobenzenesulfonic acids (pre-IBSes) and stoichiometric amounts of Oxone® as a co-oxidant under mild conditions. The reaction rate of IBS-catalyzed oxidation under nonaqueous conditions was further accelerated in the presence of an inorganic base such as potassium carbonate (K2CO3), a phase transfer catalyst such as tetrabutylammonium hydrogen sulfate (nBu4NHSO4), and a dehydrating agent such as anhydrous sodium sulfate (Na2SO4).
A site-selective hydroxylative dearomatization of 2-substituted phenols to either 1,2-benzoquinols or their cyclodimers, catalyzed by 4,5-dimethyl-2-iodoxybenzenesulfonic acid with Oxone, has been developed. Natural products such as biscarvacrol and lacinilene C methyl ether could be synthesized efficiently under mild reaction conditions. Furthermore, both the reaction rate and site selectivity could be further improved by the introduction of a trialkylsilylmethyl substituent at the 2-position of phenols. The corresponding 1,2-quinols could be transformed into various useful structural motifs by [4+2] cycloaddition cascade reactions.
A site‐selective hydroxylative dearomatization of 2‐substituted phenols to either 1,2‐benzoquinols or their cyclodimers, catalyzed by 4,5‐dimethyl‐2‐iodoxybenzenesulfonic acid with Oxone, has been developed. Natural products such as biscarvacrol and lacinilene C methyl ether could be synthesized efficiently under mild reaction conditions. Furthermore, both the reaction rate and site selectivity could be further improved by the introduction of a trialkylsilylmethyl substituent at the 2‐position of phenols. The corresponding 1,2‐quinols could be transformed into various useful structural motifs by [4+2] cycloaddition cascade reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.