Adiabatic quantum-flux-parametron (AQFP) logic is an energy-efficient superconductor logic with zero static power and very small dynamic power due to adiabatic switching operations. In order to build large-scale digital circuits, we built AQFP logic cells using superconductor magnetic shields, which are necessary in order to avoid unwanted magnetic couplings between the cells and excitation currents. In preliminary experimental tests, we confirmed that the unwanted coupling became negligibly small thanks to the superconductor shields. As a demonstration, we designed a four-to-one multiplexor and a 16-junction full adder using the shielded logic cells. In both circuits, we confirmed correct logic operations with wide operation margins of excitation currents. These results indicate that large-scale AQFP digital circuits can be realized using the shielded logic cells.
We have been developing adiabatic quantum-flux-parametron (AQFP) circuits as an ultra-lowpower superconductor logic for energy-efficient computing. In a previous study, we proposed and demonstrated a quantum-flux-latch (QFL), which is a compact and compatible latch for AQFP logic. The QFL is composed of an AQFP buffer gate and a storage loop, which are directly connected to each other. However, the operation margins were not sufficiently wide due to a trade-off between the operation margins of the storage loop and that of the buffer gate. In this present study, we propose a magnetically coupled QFL (MC-QFL), where the storage loop and the buffer gate are physically separated and magnetically coupled to each other to eliminate the trade-off in the operation margins. The simulation results showed that the critical parameter margin of the MC-QFL is twice as large as that of the previously designed QFL. For comparison, we fabricated and demonstrated both the previously designed QFL and the newly designed MC-QFL. The measurement results showed that the MC-QFL has wider operation margins compared with the previously designed QFL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.