Molecular crowding conditions provided by high concentration of cosolutes are utilized for characterization of biomolecules in cell-mimicking environment and development of drug-delivery systems. In this context, (poly)ethylene glycols are often used for studying non-canonical DNA structures termed G-quadruplexes, which came into focus by emerging structural biology findings and new therapeutic drug design approaches. Recently, several reports were made arguing against using (poly)ethylene glycols in role of molecular crowding agents due to their direct impact on DNA G-quadruplex stability and topology. However, the available data on structural details underlying DNA interaction is very scarce and thus limits in-depth comprehension. Herein, structural and thermodynamic analyses were strategically combined to assess G-quadruplex-cosolute interactions and address previously reported variances regarding the driving forces of G-rich DNA structural transformations under molecular crowding conditions. With the use of complementary (CD, NMR and UV) spectroscopic methods and model approach we characterized DNA G-quadruplex in the presence of the smallest and one of the largest typically used (poly)ethylene glycols. Dehydration effect is the key contributor to ethylene-glycol-induced increased stability of the G-quadruplex, which is in the case of the large cosolute mainly guided by the subtle direct interactions between PEG 8000 and the outer G-quartet regions.
The intracellular environment is crowded and heterogeneous. Although the thermodynamic stability of nucleic acid duplexes is predictable in dilute solutions, methods of predicting such stability under specific intracellular conditions are not yet available. We recently showed that the nearest-neighbor model for self-complementary DNA is valid under molecular crowding condition of 40% polyethylene glycol with an average molecular weight of 200 (PEG 200) in 100 mM NaCl. Here, we determined nearest-neighbor parameters for DNA duplex formation under the same crowding condition to predict the thermodynamics of DNA duplexes in the intracellular environment. Preferential hydration of the nucleotides was found to be the key factor for nearest-neighbor parameters in the crowding condition. The determined parameters were shown to predict the thermodynamic parameters (∆H°, ∆S°, and ∆G°37) and melting temperatures (Tm) of the DNA duplexes in the crowding condition with significant accuracy. Moreover, we proposed a general method for predicting the stability of short DNA duplexes in different cosolutes based on the relationship between duplex stability and the water activity of the cosolute solution. The method described herein would be valuable for investigating biological processes that occur under specific intracellular crowded conditions and for the application of DNA-based biotechnologies in crowded environments.
The stability of Watson–Crick paired RNA/DNA hybrids is important for designing optimal oligonucleotides for ASO (Antisense Oligonucleotide) and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)–Cas9 techniques. Previous nearest-neighbour (NN) parameters for predicting hybrid stability in a 1 M NaCl solution, however, may not be applicable for predicting stability at salt concentrations closer to physiological condition (e.g. ∼100 mM Na+ or K+ in the presence or absence of Mg2+). Herein, we report measured thermodynamic parameters of 38 RNA/DNA hybrids at 100 mM NaCl and derive new NN parameters to predict duplex stability. Predicted ΔG°37 and Tm values based on the established NN parameters agreed well with the measured values with 2.9% and 1.1°C deviations, respectively. The new results can also be used to make precise predictions for duplexes formed in 100 mM KCl or 100 mM NaCl in the presence of 1 mM Mg2+, which can mimic an intracellular and extracellular salt condition, respectively. Comparisons of the predicted thermodynamic parameters with published data using ASO and CRISPR–Cas9 may allow designing shorter oligonucleotides for these techniques that will diminish the probability of non-specific binding and also improve the efficiency of target gene regulation.
Oligoethylene glycols are used as crowding agents in experiments that aim to understand the effects of intracellular environments on DNAs. Moreover, DNAs with covalently attached oligoethylene glycols are used as cargo carriers for drug delivery systems. To investigate how oligoethylene glycols interact with DNAs, we incorporated deoxythymidine modified with oligoethylene glycols of different lengths, such as tetraethylene glycol (TEG), into DNAs that form antiparallel G-quadruplex or hairpin structures such that the modified residues were incorporated into loop regions. Thermodynamic analysis showed that because of enthalpic differences, the modified G-quadruplexes were stable and the hairpin structures were slightly unstable relative to unmodified DNA. The stability of G-quadruplexes increased with increasing length of the ethylene oxides and the number of deoxythymidines modified with ethylene glycols in the G-quadruplex. Nuclear magnetic resonance analyses and molecular dynamics calculations suggest that TEG interacts with bases in the G-quartet and loop via CH–π and lone pair–π interactions, although it was previously assumed that oligoethylene glycols do not directly interact with DNAs. The results suggest that numerous cellular co-solutes likely affect DNA function through these CH–π and lone pair–π interactions.
G-Quadruplexes are noncanonical structures formed by guanine-rich regions of not only DNA but also RNA. RNA G-quadruplexes are widely present in the transcriptome as mRNAs and noncoding RNAs and take part in various essential functions in cells. Furthermore, stable RNA G-quadruplexes control the extent of biological functions, such as mRNA translation and antigen presentation. To understand and regulate the functions controlled by RNA G-quadruplexes in cellular environments, which are molecularly crowded, we would be required to investigate the stability of G-quadruplexes in molecular crowding. Here, we systematically investigated the thermodynamic stability of RNA G-quadruplexes with different numbers of G-quartets and lengths of loops. The molecular crowding conditions of polyethylene glycol with an average molecular weight of 200 (PEG200) were found to stabilize RNA G-quadruplexes with three and four G-quartets, while G-quadruplexes with two G-quartets did not exhibit any stabilization upon addition of PEG200. On the other hand, no difference in stabilization by PEG200 was observed among the G-quadruplexes with different loop lengths. Thermodynamic analysis of the RNA G-quadruplexes revealed more appropriate motifs for identifying G-quadruplex-forming sequences. The informatics analysis with new motifs demonstrated that the distributions of G-quadruplexes in human noncoding RNAs differed depending on the number of G-quartets. Therefore, RNA G-quadruplexes with different numbers of G-quartets may play different roles in response to environmental changes in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.