Bilirubin oxidase (EC:1.3.3.5) purified from a culture medium of Myrothecium verrucaria MT-1 (authentic enzyme) catalyzes the oxidation of bilirubin to biliverdin in vitro and recombinant enzyme (wild type) was obtained by using an overexpression system of the bilirubin oxidase gene with Aspergillus oryzae harboring an expression vector. The absorption and ESR spectra showed that both bilirubin oxidases are multicopper oxidases containing type 1, type 2, and type 3 coppers similar to laccase, ascorbate oxidase, and ceruloplasmin. Site-directed mutagenesis has been performed for the possible ligands of each type of copper. In some mutants, Cys457 --> Val, Ala, His94 --> Val, and His134.136 --> Val, type 1 and type 2 copper centers were perturbed completely and the enzyme activity was completely lost. Differing from the holoenzyme, these mutants showed type 3 copper signals. However, the optical and magnetic properties characteristic of type 1 copper were retained even by mutating one of the type 1 copper ligands, i.e., a mutant, Met467 --> Gly, showed a weak but apparent enzyme activity. A double mutant His456.458 --> Val had only type 1 Cu, showing a blue band at 600 nm (epsilon = 1.6 x 10(3)) and an ESR signal with very narrow hyperfine splitting (A parallel = 7.2 x 10(-)3 cm-1). Since the type 2 and type 3 coppers are not present, the mutant did not show enzyme activity. These results strongly imply that the peculiar sequence in bilirubin oxidase, His456-Cys457-His458, forms an intramolecular electron-transfer pathway between the type 1 copper site and the trinuclear center composed of the type 2 and type 3 copper sites.
The 3-dimensional structure of inorganic pyrophosphatase from Therrnus thermophilus (T-PPase) has been determined by X-ray diffraction at 2.0 A resolution and refined to R = 15.3%. The structure consists of an antiparallel closed @sheet and 2 a-helices and resembles that of the yeast enzyme in spite of the large difference in size (174 and 286 residues, respectively), little sequence similarity beyond the active center (about 20%), and different oligomeric organization (hexameric and dimeric, respectively). The similarity of the polypeptide folding in the 2 PPases provides a very strong argument in favor of an evolutionary relationship between the yeast and bacterial enzymes. The same Greek-key topology of the 5-stranded 0-barrel was found in the OB-fold proteins, the bacteriophage gene-5 DNA-binding protein, toxic-shock syndrome toxin-1, and the major cold-shock protein of Bacillus subtilis. Moreover, all known nucleotide-binding sites in these proteins are located on the same side of the 0-barrel as the active center in T-PPase. Analysis of the active center of T-PPase revealed 17 residues of potential functional importance, 16 of which are strictly conserved in all sequences of soluble PPases. Their possible role in the catalytic mechanism is discussed on the basis of the present crystal structure and with respect to site-directed mutagenesis studies on the Escherichia coli enzyme. The observed oligomeric organization of T-PPase allows us to suggest a possible mechanism for the allosteric regulation of hexameric PPases.
In our previous paper, we reported a mutant of recombinant Myrothecium verrucaria bilirubin oxidase, in which the Met467 residue was replaced by Gly [Shimizu, A. et al. (1999) Biochemistry 38, 3034-3042]. This mutant displayed a remarkable reduction in enzymatic activity and an evident decrease in the intensity of the absorption band around 600 nm (type 1 charge transfer transition). In this study, we report the preparation of three Met467 mutants (Met467Gln, Met467His, and Met467Arg) and characterize their enzymatic activities, midpoint potentials, and absorption and ESR spectra. Met467His and Met467Arg show no enzymatic activity and a great reduction in the intensity of the absorption band around 600 nm. Furthermore, their ESR spectra show no type 1 copper signal, but only a type 2 copper signal; however, oxidation by ferricyanide caused the type 1 copper signal to appear. On the other hand, Met467Gln as expressed shows both type 1 and type 2 copper signals in its ESR spectrum, the type 1 copper atom parameters being very different from usual blue copper proteins but very similar to those of stellacyanin. The enzymatic activity of the Met467Gln mutant for bilirubin is quite low (0.3%), but the activity for potassium ferrocyanide is similar (130%) to that of the wild type enzyme. These results indicate that Met467 is important for characterizing the features of the type 1 copper of bilirubin oxidase.
Baker's asthma, a typical occupational allergic disease, is a serious problem in the food industries. In this study, purification and identification of major allergens recognized by IgEs in sera of allergic patients were performed. Major immunoreactive proteins were purified from the albumin fraction by gel filtration on a Toyopearl HW-50 column followed by reverse-phase HPLC. The N-terminal amino acid sequences and molecular masses measured by MS indicated that the major immunoreactive proteins are members of the alpha-amylase inhibitor family, 0.19 and 0.28. Significant leukotriene release by each purified protein was observed in cell-associated stimulation tests, suggesting in vivo activity of these antigens. Carbohydrate analyses of major allergens indicated that they are monoglycosylated but not N-glycosylated in spite of the presence of a potential N-glycosylation site. Recombinant 0.19 expressed in Escherichia coli showed the same reactivity with IgE as native wheat 0.19 in Western blotting and ELISA using methyl vinyl ether maleic anhydride co-polymer as an immobilizing reagent, suggesting that the allergenic epitopes are located in the peptide portions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.