We report a cell-free system for the high-throughput synthesis and screening of gene products. The system, based on the eukaryotic translation apparatus of wheat seeds, has significant advantages over other commonly used cell-free expression systems. To maximize the yield and throughput of the system, we optimized the mRNA UTRs, designed an expression vector for large-scale protein production, and developed a new strategy to construct PCRgenerated DNAs for high-throughput production of many proteins in parallel. The resulting system achieves high-yield expression and can maintain productive translation for 14 days. Additionally, in the integration of a PCR-directed system for template creation, at least 50 genes can be translated in parallel, yielding between 0.1 and 2.3 mg of protein by one person within 2 days. Assessment of correct protein folding by the products of this high-throughput protein-expression system were performed by enzymatic assays of kinases and by NMR spectroscopic analysis. The cell-free system, reported here, bypasses many of the time-consuming cloning steps of conventional expression systems and lends itself to a robotic automation for the high-throughput expression of proteins. With the sequencing of the genomes of various species, attention has turned to the structure, properties, and functional activities of proteins. However, rapid progress in the study of proteins encoded by the newly discovered genes is based on the availability of sufficient amounts of a large number of proteins. Currently, three strategies are being used for protein production: chemical synthesis, in vivo expression, and cell-free protein synthesis. The first two methods have severe limitations: chemical synthesis is not practical for the synthesis of long peptides (1), and in vivo expression can produce only those proteins that do not affect the physiology of the host cell (2). Cell-free translation systems, in contrast, can synthesize large proteins with a speed and accuracy that approach those of in vivo translation (3, 4), and they can express proteins that would otherwise interfere with host cell physiology. However, these systems are reputed to be unstable and thus inefficient (5). One of the most convenient and promising eukaryotic cell-free translation systems is based on wheat embryos that store all of the components of translation in a concentrated dried state, ready for protein synthesis as soon as germination starts. Recently, we found that conventional wheat germ extracts contain the RNA N-glycosidase tritin and other inhibitors of translation such as thionin, ribonucleases, deoxyribonucleases, and proteases. These inhibitors originate from the endosperm (6, 7). Extensive washing of wheat embryos to eliminate endosperm contaminants has resulted in extracts with a high degree of stability and activity. By using mRNA having 5Ј-m 7 GpppG (cap) and a poly(A)-tail (pA) with this extract, the translation reaction proceeds for Ͼ60 h, when it is performed in a dialysis bag with a continuous supply of substrate...
Current cell-free protein synthesis systems can synthesize proteins with high speed and accuracy, but produce only a low yield because of their instability over time. Here we describe the preparation of a highly efficient but also robust cell-free system from wheat embryos. We first investigated the source of the instability of existing systems in light of endogenous ribosome-inactivating proteins and found that ribosome inactivation by tritin occurs already during extract preparation and continues during incubation for protein synthesis. Therefore, we prepared our system from extensively washed embryos that are devoid of contamination by endosperm, the source of tritin and possibly other inhibitors. In a batch system, we observed continuous translation for 4 h, and sucrose density gradient analysis showed formation of large polysomes, indicating high protein synthesis activity. When the reaction was performed in a dialysis bag, enabling the continuous supply of substrates together with the continuous removal of small byproducts, translation proceeded for >60 h, yielding 1-4 mg of enzymatically active proteins, and 0.6 mg of a 126-kDa tobacco mosaic virus protein, per milliliter of reaction volume. Our results demonstrate that plants contain endogenous inhibitors of translation and that after their elimination the translational apparatus is very stable. This contrasts with the common belief that cell-free translation systems are inherently unstable, even fragile. Our method is useful for the preparation of large amounts of active protein as well as for the study of protein synthesis itself.
Biochemical characterization of each gene product encoded in the genome is essential to understand how cells are regulated. The bottleneck has been and still is in how the gene products can be obtained. The wheat cell-free protein synthesis system we have developed is a powerful method for preparation of many different proteins at a time and also for preparation of large amounts of specific proteins for biochemical and structural analyses. Here, we show a method for preparation of the wheat embryo extract useful for the cell-free reactions, by which 5 ml of a high-activity extract is obtained in 4-5 d. We also describe the methods for small- and large-scale protein synthesis by hands-down operations with the use of mRNAs prepared by transcription of PCR products and pEU plasmids harboring the target cDNAs, which need 2-4 d excepting the time required for plasmid preparation.
Neurodegeneration correlates with Alzheimer's disease (AD) symptoms, but the molecular identities of pathogenic amyloid β-protein (Aβ) oligomers and their targets, leading to neurodegeneration, remain unclear. Amylospheroids (ASPD) are AD patient-derived 10-to 15-nm spherical Aβ oligomers that cause selective degeneration of mature neurons. Here, we show that the ASPD target is neuronspecific Na + /K + -ATPase α3 subunit (NAKα3). ASPD-binding to NAKα3 impaired NAKα3-specific activity, activated N-type voltage-gated calcium channels, and caused mitochondrial calcium dyshomeostasis, tau abnormalities, and neurodegeneration. NMR and molecular modeling studies suggested that spherical ASPD contain N-terminal-Aβ-derived "thorns" responsible for target binding, which are distinct from low molecular-weight oligomers and dodecamers. The fourth extracellular loop (Ex4) region of NAKα3 encompassing Asn 879 and Trp 880 is essential for ASPD-NAKα3 interaction, because tetrapeptides mimicking this Ex4 region bound to the ASPD surface and blocked ASPD neurotoxicity. Our findings open up new possibilities for knowledge-based design of peptidomimetics that inhibit neurodegeneration in AD by blocking aberrant ASPD-NAKα3 interaction.NMR | computational modeling | abnormal protein-protein interaction in synapse | hyperexcitotoxicity | protein-protein interaction inhibitors
One of the major bottlenecks in malaria research has been the difficulty in recombinant protein expression. Here, we report the application of the wheat germ cell-free system for the successful production of malaria proteins. For proof of principle, the Pfs25, PfCSP, and PfAMA1 proteins were chosen. These genes contain very high A/T sequences and are also difficult to express as recombinant proteins. In our wheat germ cell-free system, native and codon-optimized versions of the Pfs25 genes produced equal amounts of proteins. PfCSP and PfAMA1 genes without any codon optimization were also expressed. The products were soluble, with yields between 50 and 200 g/ml of the translation mixture, indicating that the cell-free system can be used to produce malaria proteins without any prior optimization of their biased codon usage. Biochemical and immunocytochemical analyses of antibodies raised in mice against each protein revealed that every antibody retained its high specificity to the parasite protein in question. The development of parasites in mosquitoes fed patient blood carrying Plasmodium falciparum gametocytes and supplemented with our mouse anti-Pfs25 sera was strongly inhibited, indicating that both Pfs25-3D7/WG and Pfs25-TBV/WG retained their immunogenicity. Lastly, we carried out a parallel expression assay of proteins of blood-stage P. falciparum. The PCR products of 124 P. falciparum genes chosen from the available database were used directly in a small-scale format of transcription and translation reactions. Autoradiogram testing revealed the production of 93 proteins. The application of this new cell-free system-based protocol for the discovery of malaria vaccine candidates will be discussed.Plasmodium falciparum is the protozoan responsible for the widespread return of malaria to tropical countries, particularly in Africa. This reemergence is generally credited to two causes: the development of multidrug-resistant parasites and the development of insecticide-resistant mosquitoes (10). Through decades of work, scientists have learned that vaccination could be a potent curative, but efforts to develop a successful vaccine have not yet succeeded (25). One of the bottlenecks in vaccine development is at the malaria protein production step and is mainly due to the lack of a methodology to enable preparation of quality proteins in an efficient manner. P. falciparum genes have a very high A/T content (average, 76% per gene), and a number of them encode repeated stretches of amino acid sequences (8); these features have been proposed as the major factors limiting P. falciparum protein expression in cell-based systems. Moreover, the presence of glycosylation machinery in eukaryotic cell-based systems can produce inappropriately glycosylated recombinant malaria proteins, resulting in incorrect immune responses (9,21,26). In fact, the three pioneering genome-wide studies on the production of P. falciparum proteins in cell-based systems faced serious problems. For instance, Aguiar et al. (1) were able to obtain exp...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.