Sonochemically prepared Pt, Au and Pd nanoparticles were successfully immobilized onto TiO2 with the assistance of prolonged sonication. Their photocatalytic activities were evaluated in H2 production from aqueous ethanol solutions. Beside the sonochemical method, the conventional impregnation method was also employed to prepare photocatalysts. The sonochemically prepared catalysts showed higher activities than did the conventional ones. Their photocatalytic activities depended on the work functions and the dimensions of supported noble metal nanoparticles. Smaller Pt nanoparticles effectively restricted recombination of electrons and holes and provided H2 at a higher rate.
Magnetic iron oxide nanoparticles were successfully prepared by a novel reverse precipitation method with the irradiation of ultrasound. TEM, XRD and SQUID analyses showed that the formed particles were magnetite (Fe3O4) with about 10 nm in their diameter. The magnetite nanoparticles exhibited superparamagnetism above 200 K, and the saturation magnetization was 32.8 emu/g at 300 K. The sizes and size distributions could be controlled by the feeding conditions of FeSO4·7H2O aqueous solution, and slower feeding rate and lower concentration lead to smaller and more uniform magnetite nanoparticles. The mechanisms of sonochemical oxidation were also discussed. The analyses of sonochemically produced oxidants in the presence of various gases suggested that besides sonochemically formed hydrogen peroxide, nitrite and nitrate ions contributed to Fe(II) ion oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.