Terrestrial planets currently in the habitable zones around M dwarfs likely experienced a long-term runaway-greenhouse condition because of a slow decline in host-star luminosity in its pre-main-sequence phase. Accordingly, they might have lost significant portions of their atmospheres including water vapor at high concentration by hydrodynamic escape induced by the strong stellar X-ray and extreme ultraviolet (XUV) irradiation. However, the atmospheric escape rates remain highly uncertain due partly to a lack of understanding of the effect of radiative cooling in the escape outflows. Here we carry out 1D hydrodynamic escape simulations for an H2–H2O atmosphere on a planet with mass of 1M
⊕ considering radiative and chemical processes to estimate the atmospheric escape rate and follow the atmospheric evolution during the early runaway-greenhouse phase. We find that the atmospheric escape rate decreases with the basal H2O/H2 ratio due to the energy loss by the radiative cooling of H2O and chemical products such as OH and OH+: the escape rate of H2 becomes one order of magnitude smaller when the basal H2O/H2 = 0.1 than that of the pure hydrogen atmosphere. The timescale for H2 escape exceeds the duration of the early runaway-greenhouse phase, depending on the initial atmospheric amount and composition, indicating that H2 and H2O could be left behind after the end of the runaway-greenhouse phase. Our results suggest that temperate and reducing environments with oceans could be formed on some terrestrial planets around M dwarfs.
PurposeTo diagnose glaucoma based on spectral domain optical coherence tomography (SD-OCT) measurements using the ‘Random Forests’ method.MethodsSD-OCT was conducted in 126 eyes of 126 open angle glaucoma (OAG) patients and 84 eyes of 84 normal subjects. The Random Forests method was then applied to discriminate between glaucoma and normal eyes using 151 OCT parameters including thickness measurements of circumpapillary retinal nerve fiber layer (cpRNFL), the macular RNFL (mRNFL) and the ganglion cell layer-inner plexiform layer combined (GCIPL). The area under the receiver operating characteristic curve (AROC) was calculated using the Random Forests method adopting leave-one-out cross validation. For comparison, AROCs were calculated based on each one of the 151 OCT parameters.ResultsThe AROC obtained with the Random Forests method was 98.5% [95% Confidence interval (CI): 97.1–99.9%], which was significantly larger than the AROCs derived from any single OCT parameter (maxima were: 92.8 [CI: 89.4–96.2] %, 94.3 [CI: 91.1–97.6] % and 91.8 [CI: 88.2–95.4] % for cpRNFL-, mRNFL- and GCIPL-related parameters, respectively; P<0.05, DeLong’s method with Holm’s correction for multiple comparisons). The partial AROC above specificity of 80%, for the Random Forests method was equal to 18.5 [CI: 16.8–19.6] %, which was also significantly larger than the AROCs of any single OCT parameter (P<0.05, Bootstrap method with Holm’s correction for multiple comparisons).ConclusionsThe Random Forests method, analyzing multiple SD-OCT parameters concurrently, significantly improves the diagnosis of glaucoma compared with using any single SD-OCT measurement.
In this work, an ultrafast spectral
diffusion of the lowest exciton
in a tetracene ultrathin film is studied by two-dimensional electronic
spectroscopy. From the analysis of the nodal line slope, the frequency-fluctuation
correlation function (FFCF) of the exciton band is extracted. The
FFCF contains two components with decay times of 400 and 80 fs; while
the former can be understood by a linear exciton–phonon coupling
model, the latter shows an order of magnitude increase in its amplitude
from 96 to 186 K that cannot be explained by the same model. A novel
scheme of the energy-gap fluctuations is examined, in which an intramolecular
high-frequency mode causes the spectral diffusion that is enhanced
through an anharmonic coupling to low-frequency phonon modes. This
finding provides a valuable input for future theoretical predictions
on the ultrafast nonadiabatic dynamics of the molecular exciton.
High-pressure operation through high strength linepipe reduces long distance transportation cost of natural gas. In order to maximize the cost reduction, X120 UOE pipe has been developed. Low C-Mo-B steel with fine-grained lower bainite (LB) microstructure realizes high strength, excellent low temperature toughness and good weldability. The technology was verified in small-scale commercial production or “mini-rolls”. Suitability for use as linepipe was demonstrated through an extensive development program that covers burst test, fracture toughness evaluation, girth welding technology, etc. A demonstration line was successfully constructed using the pipes manufactured in the “mini-rolls”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.