Abstract. Fluorescence lifetime imaging microscopy (FLIM) is a sensitive technique in monitoring functional and conformational states of nicotinamide adenine dinucleotide reduced (NADH) and flavin adenine dinucleotide (FAD),main compounds participating in oxidative phosphorylation in cells. In this study, we have applied FLIM to characterize the metabolic changes in HeLa cells upon bacterial infection and made comparison with the results from the cells treated with staurosporine (STS), a well-known apoptosis inducer. The evolving of NADH's average autofluorescence lifetime during the 3 h after infection with enterohemorragic Escherichia coli (EHEC) or STS treatment has been observed. The ratio of the short and the long lifetime components' relative contributions of NADH increases with time, a fact indicating cellular metabolic activity, such as a decrease of oxidative phosphorylation over the course of infection, while opposite dynamics is observed in FAD. Being associated with mitochondria, FAD lifetimes and redox ratio could indicate heterogeneous mitochondrial function, microenvironment with bacterial infection, and further pathway to cell death. The redox ratios for both EHECinfected and STS-treated HeLa cells have been observed and these observations also indicate possible apoptosis induced by bacterial infection.
Collagen is the main structural protein and the key determinant of mechanical and functional properties of tissues and organs. Proper balance between synthesis and degradation of collagen molecules is critical for maintaining normal physiological functions. In addition, collagen influences tumor development and drug delivery, which makes it a potential cancer therapy target. Using second harmonic generation, two-photon excited fluorescence microscopy, and spectrofluorimetry, we show that the natural pigment hypericin induces photosensitized destruction of collagen-based tissues. We demonstrate that hypericin-mediated processes in collagen fibers are irreversible and may be used for the treatment of cancer and collagen-related disorders.
A microscopic Potts-like one-dimensional model with many particle interactions [referred as the generalized model of polypeptide chains (GMPCs)] is developed to investigate cooperativity of DNA sequence dependent melting. For modeling sequence, regular homogeneous sequences were arranged in heterogeneous blocks of various lengths. Within the framework of the GMPC the authors show that the inclusion of stacking interaction heterogeneity relative to homogeneous hydrogen bond interactions leads to an unexpected and quite remarkable increase in melting cooperativity for small blocks. In some cases this tendency persists for long blocks having sharp sequence heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.