We have examined components of the preintegration complex of human immunodeficiency virus type 1 (H1V-1) and have analyzed features which govern the association of these components. HIV-1 nucleoprotein complexes, isolated from nuclear and cytoplasmic extracts of CD4+ cells after acute virus infection, contained viral RNA and DNA in association with viral matrix (MA), integrase (IN), and reverse ranscriptase (RT) antigens but not capsid (CA) antigens and posessed integration activity in vitro. Association of IN but not RT or MA antigens with viral DNA was detergent-stable. Analysis of viral DNA synthesis and nuclear import of viral nucleoprotein complexes in the presence of a reversible RT inhibitor demonstrated that reverse transcription of viral RNA could be completed entirely in the host cell nucleus. Our studies demonstrate structural and functional features of the nudeoprotein (preintegration) complex of HIV-1 which are pertinent to the understanding of early events in the lentiviral life cycle.
An emerging body of data indicates that the protein mediator described originally as macrophage migration inhibitory factor (MIF) exerts a central and wide ranging role in host inflammatory responses. MIF is a major constituent of corticotrophic cells within the anterior pituitary gland and is secreted into the circulation in a hormone-like fashion. MIF also exists performed in monocytes/macrophages and is a pivotal mediator in the host response to endotoxic shock. To gain further insight into the biologic expression of this protein that encompasses components of both the immune and the endocrine systems, we have cloned the mouse MIF gene and identified potential regulatory sequences present within the 5'-proximal promoter region. The gene for mouse MIF is located on chromosome 10, spans approximately 1 kb, and shares a high degree of structural homology with its human counterpart. Of note, the consensus enhancer/promoter motifs identified include both inflammatory/growth factor-related elements and sites associated with the genes for certain peptide hormones. We also report the structures of two MIF pseudogenes that account for early observations suggesting that mouse MIF is encoded by a highly homologous multigene family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.