Valproic acid (VPA) is a widely used antiepileptic agent that is undergoing clinical evaluation for anticancer therapy. We assessed the effects of VPA on angiogenesis in vitro and in vivo. In human umbilical vein endothelial cells, therapeutically relevant concentrations of VPA (0.25 to 1 mM) inhibited proliferation, migration, and tube formation. VPA 1 mM inhibited endothelial cell proliferation by 51 Ϯ 5%, migration by 86 Ϯ 11%, and tube formation by 82 Ϯ 3%. These changes were preceded by the hyperacetylation of histone H4, indicating the inhibition of histone deacetylase (HDAC), and a decreased expression of the endothelial nitric-oxide synthase (eNOS). The inhibition of endothelial cell tube formation by VPA was prevented by addition of the nitric oxide donor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate). The anticonvulsive active VPA derivative 2-ethyl-4-methylpentanoic acid, which does not inhibit HDAC, did not affect endothelial cell proliferation, tube formation, or eNOS expression. VPA was also found to inhibit angiogenesis in vivo in the chicken chorioallantoic membrane assay and in a Matrigel plug assay in mice. Embryos from VPA-treated mice showed disturbed vessel formation. These results indicate that therapeutic plasma levels of VPA inhibit angiogenesis by a mechanism involving a decrease in eNOS expression preceded by HDAC inhibition.
The histone deacetylase (HDAC) inhibitor valproic acid (VPA) was recently shown to inhibit angiogenesis, but displays no toxicity in endothelial cells. Here, we demonstrate that VPA increases extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation in human umbilical vein endothelial cells (HUVEC). The investigation of structurally modified VPA derivatives revealed that the induction of ERK 1/2 phosphorylation is not correlated to HDAC inhibition. PD98059, a pharmacological inhibitor of the mitogenactivated protein kinase kinase 1/2, prevented the VPAinduced ERK 1/2 phosphorylation. In endothelial cells, ERK 1/2 phosphorylation is known to promote cell survival and angiogenesis. Our results showed that VPA-induced ERK 1/2 phosphorylation in turn causes phosphorylation of the antiapoptotic protein Bcl-2 and inhibits serum starvationinduced HUVEC apoptosis and cytochrome c release from the mitochondria. Moreover, the combination of VPA with PD98059 synergistically inhibited angiogenesis in vitro and in vivo.
The mode of the antitumoral activity of multimutated oncolytic herpes simplex virus type 1 G207 has not been fully elucidated yet. Because the antitumoral activity of many drugs involves the inhibition of tumor blood vessel formation, we determined if G207 had an influence on angiogenesis. Monolayers of human umbilical vein endothelial cells and human dermal microvascular endothelial cells, but not human dermal fibroblasts, bronchial epithelial cells, and retinal glial cells, were highly sensitive to the replicative and cytotoxic effects of G207. Moreover, G207 infection caused the destruction of endothelial cell tubes in vitro. In the in vivo Matrigel plug assay in mice, G207 suppressed the formation of perfused vessels. Intratumoral treatment of established human rhabdomyosarcoma xenografts with G207 led to the destruction of tumor vessels and tumor regression. Ultrastructural investigations revealed the presence of viral particles in both tumor and endothelial cells of G207-treated xenografts, but not in adjacent normal tissues. These findings show that G207 may suppress tumor growth, in part, due to inhibition of angiogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.