In this work, new Bäcklund transformations (BTs) for generalized Liouville equations were obtained. Special cases of Liouville equations with exponential nonlinearity that have a multiplier that depends on the independent variables and first-order derivatives from the function were considered. Two- and three-dimensional cases were considered. The BTs construction is based on the method proposed by Clairin. The solutions of the considered equations have been found using the BTs, with a unified algorithm. In addition, the work develops the Clairin’s method for the system of two third-order equations related to the integrable perturbation and complexification of the Korteweg-de Vries (KdV) equation. Among the constructed BTs an analog of the Miura transformations was found. The Miura transformations transfer the initial system to that of perturbed modified KdV (mKdV) equations. It could be shown on this way that, considering the system as a link between the real and imaginary parts of a complex function, it is possible to go to the complexified KdV (cKdV) and here the analog of the Miura transformations transforms it into the complexification of the mKdV.
This work aims to obtain new transformations and auto-Bäcklund transformations for generalized Liouville equations with exponential nonlinearity having a factor depending on the first derivatives. This paper discusses the construction of Bäcklund transformations for nonlinear partial second-order derivatives of the soliton type with logarithmic nonlinearity and hyperbolic linear parts. The construction of transformations is based on the method proposed by Clairin for second-order equations of the Monge–Ampere type. For the equations studied in the article, using the Bäcklund transformations, new equations are found, which make it possible to find solutions to the original nonlinear equations and reveal the internal connections between various integrable equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.