The radiative forcing (RF) of carbon dioxide (CO2) is the leading contribution to climate change from anthropogenic activities. Calculating CO2 RF requires detailed knowledge of spectral line parameters for thousands of infrared absorption lines. A reliable spectroscopic characterization of CO2 forcing is critical to scientific and policy assessments of present climate and climate change. Our results show that CO2 RF in a variety of atmospheres is remarkably insensitive to known uncertainties in the three main CO2 spectroscopic parameters: the line shapes, line strengths, and half widths. We specifically examine uncertainty in RF due to line mixing as this process is critical in determining line shapes in the far wings of CO2 absorption lines. RF computed with a Voigt line shape is also examined. Overall, the spectroscopic uncertainty in present‐day CO2 RF is less than 1%, indicating a robust foundation in our understanding of how rising CO2 warms the climate system.
Airplane state awareness (ASA) is a pilot performance attribute derived from the more general attribute known as situation awareness. Airplane state alludes primarily to attitude and energy state, but also infers other state variables, such as the state of automated or autonomous systems, that can affect attitude or energy state. Recognizing that loss of ASA has been a contributing factor to recent accidents, an industry-wide team has recommended several Safety Enhancements (SEs) to resolve or mitigate the problem. Two of these SEs call for research and development of new technology that can predict energy and/or auto-flight system states, and intuitively notify or alert flight crews to future unsafe or otherwise undesired states. In addition, it is desired that future air vehicles will be able to operate with a high degree of awareness of their own well-being. This form of ASA requires onboard predictive capabilities that can inform decision-making functions of critical markers trending to unsafe states. This paper describes a high-fidelity flight simulation study designed to address the two industryrecommended SEs for current aircraft, as well as this desired self-awareness capability for future aircraft. Eleven commercial airline crews participated in the testing, completing more than 220 flights. Flight scenarios were utilized that span a broad set of conditions including several that emulated recent accidents. An extensive data set was collected that includes both qualitative data from the pilots, and quantitative data from a unique set of instrumentation devices. The latter includes a head-/eye-tracking system and a physiological measurement system. State-of-the-art flight deck systems and indicators were evaluated, as were a set of new technologies. These included an enhancement to the bank angle indicator; predictive algorithms and indications of where the auto-flight system will take the aircraft and when automation mode changes will occur or where energy-related problems may occur; and synoptic (i.e., graphical) depictions of the effects of loss of flight critical data, combined with streamlined electronic checklists. Topics covered by this paper include the research program context, test objectives, descriptions of the technologies under test, platform and operational environment setup, a summary of findings, and future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.