Abstract:In this paper, a robust adaptive self-organizing control system based on a novel wavelet fuzzy cerebellar model articulation controller (WFCMAC) is developed for an n-link robot manipulator to achieve the high-precision position tracking. This proposed controller consists of two parts: one is the WFCMAC approach which is implemented to cope with nonlinearities, due to the novel WFCMAC not only incorporates the wavelet decomposition property with fuzzy CMAC fast learning ability but also it will be self-organized; that is, the layers of WFCMAC will grow or prune systematically. Therefore, dimension of WFCMAC can be simplified. The second is the order which is the adaptive robust controller which is designed to achieve robust tracking performance of the system. The adaptive tuning laws of WFCMAC parameters and error estimation of adaptive robust controller are derived through the Lyapunov function so that the stability of the system can be guaranteed. Finally, the simulation and experimental results of novel three-link deicing robot manipulator are applied to verify the effectiveness of the proposed control methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.