BackgroundThe leaves of Dissotis rotundifolia are used ethnomedically across Africa without scientific basis or safety concerns. Determination of its phytochemical constituents, antimicrobial activity, effects on the gastrointestinal tract (GIT) as well as toxicological profile will provide supportive scientific evidence in favour of its continous usage.MethodChemical and chromatographic tests were employed in phytochemical investigations. Inhibitory activity against clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Salmonella typhi were compared with Gentamycin. Our report includes minimum inhibitory concentration (MIC) against the tested organisms. The effect of the ethanol extract on the motility of the GIT in mice using the charcoal plug method and castor oil induced diarrhoea in rats was evaluated. Toxicological evaluation was determined by administering 250 mg/kg and 500 mg/kg of extracts on male Wistar rats for 14 days with normal saline as control. The tissues of the kidneys, liver, heart and testes were examined.ResultsPhytochemical studies revealed the presence of alkaloids, saponin and cardiac glycosides. The crude ethanol extract and fractions inhibited the growth of E. coli, P. aeruginosa, S. aureus and S. typhi to varying extents. The degree of transition exhibited by the charcoal meal was dose-dependent. In the castor oil induced diarrhoea test, all the doses showed anti-spasmodic effects. The LD50 in mice was above 500 mg/kg body weight. Toxicological evaluation at 500 mg/kg showed increased cytoplasmic eosinophilia and densely stained nuclei of the liver, tubular necrosis of the kidney, presence of ill-defined testes with indistinct cell outlines and no remarkable changes in the heart.ConclusionEthanol extracts of Dissotis rotundifolia have demonstrated antimicrobial activity against clinical strains of selected microorganisms. The plant showed potential for application in the treatment of diarrhoea, thereby justifying its usage across Africa. It also demonstrated toxicity in certain organs at the dose of 500 mg/kg, and it will be necessary to fully establish its safety profile.
BackgroundScoparia dulcis Linn (Scrophulariaceae) together with other medicinal plants serve as antisickling remedies in Africa. This study was aimed at investigating the antisickling activity of the leaves of the plant as well as establishing the toxicological profile.MethodChemical tests were employed in phytochemical investigations. Evaluation of the antisickling activity involved the inhibition of sodium metabisulphite-induced sickling of the HbSS red blood cells obtained from confirmed sickle cell patients who were not in crises. Concentrations of the crude extract and its fractions were tested with normal saline and p-hydroxybenzoic acid serving as controls. Acute toxicological evaluation was carried out in mice while 30-day assessment was done in rats.ResultsPhytochemical screening revealed the presence of alkaloids, tannins, flavonoids and saponins. Percentage sickling inhibitions of the aqueous methanol extracts of S. dulcis were significant all through the period of assay p < 0. 05 compared to normal saline, but not significant with PHBA. The fractions had less activity compared to the crude extracts. The LD 50 of the extract in mice was above 8000 mg/kg body weight when administered orally. Toxicological evaluations at 250 and 500 mg/kg showed mild congestion in virtually all the target organs.ConclusionThe antisickling results confirmed traditional usage of Scoparia dulcis in the management of Sickle cell disorders and a candidate for further investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.