International audienceThis work is dedicated to the synthesis of a new fault detection and identification scheme for the actuator and/or sensor faults modeled as unknown inputs of the system. The novelty of this scheme consists in the synthesis of a new structure of proportional-integral observer (PIO) reformulated from the new linear ARX-Laguerre representation with filters on system input and output in order to estimate the unknown inputs presented as faults. The designed observer exploits the input/output measurements to reconstruct the Laguerre filter outputs where the stability and the convergence properties are ensured by using Linear Matrix Inequality. However, a significant reduction of this model is subject to an optimal choice of both Laguerre poles which is achieved by a new proposed identification approach based on a genetic algorithm. The performances of the proposed identification approach and the resulting PIO are tested on numerical simulation and validated on a 2nd order electrical linear system
This study is motivated by the need for a new advanced vibration-based bearing monitoring approach. The ARX-Laguerre model (autoregressive with exogenous) and genetic algorithms (GAs) use collected vibration data to estimate a bearing’s remaining useful life (RUL). The concept is based on the actual running conditions of the bearing combined with a new linear ARX-Laguerre representation. The proposed model exploits the vibration and force measurements to reconstruct the Laguerre filter outputs; the dimensionality reduction of the model is subject to an optimal choice of Laguerre poles which is performed using GAs. The paper explains the test rig, data collection, approach, and results. So far and compared to classic methods, the proposed model is effective in tracking the evolution of the bearing’s health state and accurately estimates the bearing’s RUL. As long as the collected data are relevant to the real health state of the bearing, it is possible to estimate the bearing’s lifetime under different operating conditions.
Railway switches and crossings (S&C) are among the most important high-value components in a railway network and a failure of such an asset could result in severe network disturbance. Therefore, potential defects need to be detected at an early stage to prevent traffic-disturbing downtime or even severe accidents. A squat is a common defect of S&Cs that has to be monitored and repaired to reduce such risks. In this study, a testbed including a full-scale S&C and a bogie wagon was developed. Vibrations were measured for different squat sizes by an accelerometer mounted at the point machine. A method of processing the vibration data and the speed data is proposed to investigate the possibility of detecting and quantifying the severity of a squat. One key technology used is wavelet denoising. The study shows that it is possible to monitor the development of the squat size on the rail up to around 13 m from the point machine. The relationships between the normalised peak-to-peak amplitude of the vibration signal and the squat depth were also estimated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.