Trypanosomes are important global livestock and human pathogens of public health importance. Elucidating the chemical mechanisms of trypanosome-relevant host interactions can enhance the design and development of a novel, next-generation trypanosomosis diagnostics. However, it is unknown how trypanosome infection affects livestock volatile odors. Here, we show that Trypanosoma congolense and Trypanosoma vivax infections induced dihydro-β- ionone and junenol, while abundance of dihydro-α-ionone, phenolics, p-cresol, and 3-propylphenol significantly elevated in cow urine. These biomarkers of trypanosome infection are conserved in cow breath and the urine metabolites of naturally infected cows, regardless of population, diet, or environment differences. Furthermore, treating trypanosome-infected cows reduced the levels of these indicators back to the pre-infection levels. Finally, we demonstrated that the potential of some specific biomarkers of phenolic origin may be used to detect active trypanosome infections, including low-level infections that are not detectable by microscopy. The sensitivity and specificity of biomarkers detection are suited for rapid, robust, and non-invasive trypanosomosis diagnosis under field conditions.
Stomoxys calcitrans (stable fly) is a cosmopolitan biting fly of both medical and veterinary importance. Unlike blood-feeding-related behavior of stable fly, its plant feeding, the fitness value, and the S. calcitrans–plant interaction are less understood. Here we show based on two chloroplast DNA genes, ribulose bisphosphate carboxylase large chain (rbcL) and the intergenic spacer gene trnH-psbA, that field-collected male and female stable flies fed on various plant species. We investigated the fitness cost of plant feeding using Parthenium hysterophorus, one of the plant species identified to have been fed on by the field-collected flies. Supplementation of blood feeding with a flowering P. hysterophorus plant as nectar source enhanced egg hatchability significantly as compared to blood alone, showing the fitness value of nectar supplementation. However, nectar supplementation did not affect the number of eggs laid or longevity of S. calcitrans as compared to flies that fed on blood alone. S. calcitrans maintained on sugar alone failed to lay eggs. The various plants stable flies fed on demonstrated chemodiversity with their own signature scent. The behavioral response of S. calcitrans to these signature compounds varied from strong attraction (γ-terpinene) to neutral (linalool oxide and myrcene) to repellency (butanoic acid). Our study demonstrated that stable flies feed on nectar, and plant nectar supplementation of blood feeding enhanced larval emergence. Thus, our result has implication in stable fly reproduction, survival, disease transmission, boosting laboratory colony, and the possibility of using plant-derived odors for mass trapping of stable fly, for instance, using γ-terpinene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.