Most anti-cancer drugs are derived from natural resources such as marine, microbial and botanical sources. Cutaneous malignant melanoma is the most aggressive form of skin cancer, with a high mortality rate. Various treatments for malignant melanoma are available, but due to the development of multi-drug resistance, current or emerging chemotherapies have a relatively low success rates. This emphasizes the importance of discovering new compounds that are both safe and effective against melanoma. In vitro testing of melanoma cell lines and murine melanoma models offers the opportunity for identifying mechanisms of action of plant derived compounds and extracts. Common anti-melanoma effects of natural compounds include potentiating apoptosis, inhibiting cell proliferation and inhibiting metastasis. There are different mechanisms and pathways responsible for anti-melanoma actions of medicinal compounds such as promotion of caspase activity, inhibition of angiogenesis and inhibition of the effects of tumor promoting proteins such as PI3-K, Bcl-2, STAT3 and MMPs. This review thus aims at providing an overview of anti-cancer compounds, derived from natural sources, that are currently used in cancer chemotherapies, or that have been reported to show anti-melanoma, or anti-skin cancer activities. Phytochemicals that are discussed in this review include flavonoids, carotenoids, terpenoids, vitamins, sulforaphane, some polyphenols and crude plant extracts.
Abstract. Drug delivery vehicles can influence the topical delivery and the efficacy of an active pharmaceutical ingredient (API). In this study, the influence of Pheroid™ technology, which is a unique colloidal drug delivery system, on the skin permeation and antimelanoma efficacy of 5-fluorouracil were investigated. Lotions containing Pheroid™ with different concentrations of 5-fluorouracil were formulated then used in Franz cell skin diffusion studies and tape stripping. The in vitro efficacy of 5-fluorouracil against human melanoma cells (A375) was investigated using a flow cytometric apoptosis assay. Statistically significant concentrations of 5-fluorouracil diffused into and through the skin with Pheroid™ formulations resulting in an enhanced in vitro skin permeation from the 4.0% 5-fluorouracil lotion (p<0.05). The stratum corneum-epidermis and epidermis-dermis retained 5-fluorouracil concentrations of 2.31 and 6.69 μg/ml, respectively, after a diffusion study with the 4.0% Pheroid™ lotion. Subsequent to the apoptosis assay, significant differences were observed between the effect of 13.33 μg/ml 5-fluorouracil in Pheroid™ lotion and the effects of the controls. The results obtained suggest that the Pheroid™ drug delivery system possibly enhances the flux and delivery of 5-fluorouracil into the skin. Therefore, using Pheroid™ could possibly be advantageous with respect to topical delivery of 5-fluorouracil.
Background:Withania somnifera is a medicinal plant native to India and is known to have anticancer properties. It has been investigated for its anti-melanoma properties, and since melanoma presents on the skin, it is prudent to probe the use of W. somnifera in topical formulations. To enhance topical drug delivery and to allow for controlled release, the use of niosomes and solid lipid nanoparticles (SLNs) as delivery vesicles were explored.Objective:The objective of this study is to determine the stability and topical delivery of W. somnifera crude extracts encapsulated in niosomes and SLNs.Materials and Methods:Water, ethanol, and 50% ethanol crude extracts of W. somnifera were prepared using 24 h soxhlet extraction which were each encapsulated in niosomes and SLNs. Franz cell diffusion studies were conducted with the encapsulated extracts to determine the release and skin penetration of the phytomolecules, withaferin A, and withanolide A.Results:The niosome and SLN formulations had average sizes ranging from 165.9 ± 9.4 to 304.6 ± 52.4 nm with the 50% ethanol extract formulations having the largest size. A small particle size seemed to have correlated with a low encapsulation efficiency (EE) of withaferin A, but a high EE of withanolide A. There was a significant difference (P < 0.05) between the amount of withaferin A and withanolide A that were released from each of the formulations, but only the SLN formulations managed to deliver withaferin A to the stratum corneum-epidermis and epidermis-dermis layers of the skin.Conclusion:SLNs and niosomes were able to encapsulate crude extracts of W. somnifera and release the marker compounds, withaferin A, and withanolide A, for delivery to certain layers in the skin.SUMMARY Withania somnifera crude extracts were prepared using ethanol, water, and 50% ethanol as solvents. These three extracts were then incorporated into niosomes and solid lipid nanoparticles (SLNs) for use in skin diffusion studies, thus resulting in six formulations (ethanol niosome, water niosome, 50% ethanol niosome, ethanol SLN, water SLN, and 50% ethanol SLN). The diffusion of two marker compounds (withaferin A and withanolide A) from the formulations into the skin was then determined. Abbreviations used: API: Active pharmaceutical ingredient, ANOVA: Analysis of variance, ED: Epidermis-dermis, HPLC: High-performance liquid chromatography, HLB: Hydrophilic-lipophilic balance, NMR: Nuclear magnetic resonance spectroscopy, PDI: Polydispersity index, SLN: Solid lipid nanoparticle, SD: Standard deviation, SCE: Stratum corneum-epidermis, TEM: Transmission electron microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.